Display options
Share it on

Front Physiol. 2016 Apr 26;7:144. doi: 10.3389/fphys.2016.00144. eCollection 2016.

Acute Endurance Exercise Induces Nuclear p53 Abundance in Human Skeletal Muscle.

Frontiers in physiology

Bill Tachtsis, William J Smiles, Steven C Lane, John A Hawley, Donny M Camera

Affiliations

  1. Centre for Exercise and Nutrition, Mary MacKillop Institute for Health Research, Australian Catholic University Melbourne, VIC, Australia.
  2. Centre for Exercise and Nutrition, Mary MacKillop Institute for Health Research, Australian Catholic UniversityMelbourne, VIC, Australia; Research Institute for Sport and Exercise Sciences, Liverpool John Moores UniversityLiverpool, UK.
  3. Centre for Exercise and Nutrition, Mary MacKillop Institute for Health Research, Australian Catholic UniversityMelbourne, VIC, Australia; Exercise and Nutrition Research Group, School of Medical Sciences, RMIT UniversityMelbourne, VIC, Australia.

PMID: 27199762 PMCID: PMC4845512 DOI: 10.3389/fphys.2016.00144

Abstract

PURPOSE: The tumor suppressor protein p53 may have regulatory roles in exercise response-adaptation processes such as mitochondrial biogenesis and autophagy, although its cellular location largely governs its biological role. We investigated the subcellular localization of p53 and selected signaling targets in human skeletal muscle following a single bout of endurance exercise.

METHODS: Sixteen, untrained individuals were pair-matched for aerobic capacity (VO2peak) and allocated to either an exercise (EX, n = 8) or control (CON, n = 8) group. After a resting muscle biopsy, EX performed 60 min continuous cycling at ~70% of VO2peak during which time CON subjects rested. A further biopsy was obtained from both groups 3 h post-exercise (EX) or 4 h after the first biopsy (CON).

RESULTS: Nuclear p53 increased after 3 h recovery with EX only (~48%, p < 0.05) but was unchanged in the mitochondrial or cytoplasmic fractions in either group. Autophagy protein 5 (Atg-5) decreased in the mitochondrial protein fraction 3 h post-EX (~69%, P < 0.05) but remained unchanged in CON. There was an increase in cytoplasmic levels of the mitophagy marker PINK1 following 3 h of rest in CON only (~23%, P < 0.05). There were no changes in mitochondrial, nuclear, or cytoplasmic levels of PGC-1α post-exercise in either group.

CONCLUSIONS: The selective increase in nuclear p53 abundance following endurance exercise suggests a potential pro-autophagy response to remove damaged proteins and organelles prior to initiating mitochondrial biogenesis and remodeling responses in untrained individuals.

Keywords: autophagy; cell signaling; mitochondrial biogenesis; mitochondrial turnover; skeletal muscle

References

  1. Annu Rev Nutr. 2007;27:19-40 - PubMed
  2. J Appl Physiol (1985). 2012 Apr;112(7):1135-43 - PubMed
  3. J Physiol. 2012 Jan 15;590(2):351-62 - PubMed
  4. Cell. 2012 Dec 7;151(6):1319-31 - PubMed
  5. Clin Sci (Lond). 2015 Oct;129(7):589-99 - PubMed
  6. Eur J Appl Physiol. 2015 Jun;115(6):1185-94 - PubMed
  7. Eur J Appl Physiol. 2012 Aug;112(8):3173-7 - PubMed
  8. J Appl Physiol (1985). 2012 May;112(9):1529-37 - PubMed
  9. FASEB J. 2016 Jan;30(1):13-22 - PubMed
  10. Nat Commun. 2015 Apr 28;6:7014 - PubMed
  11. Anal Biochem. 2013 Feb 15;433(2):105-11 - PubMed
  12. J Appl Physiol (1985). 2007 Nov;103(5):1744-51 - PubMed
  13. Cancer Res. 2007 Apr 1;67(7):3043-53 - PubMed
  14. FASEB J. 2013 Oct;27(10 ):4184-93 - PubMed
  15. Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):378-83 - PubMed
  16. J Gerontol A Biol Sci Med Sci. 2013 May;68(5):599-607 - PubMed
  17. Nat Cell Biol. 2011 Feb;13(2):132-41 - PubMed
  18. J Appl Physiol (1985). 2011 Mar;110(3):834-45 - PubMed
  19. Med Sci Sports Exerc. 2010 Oct;42(10):1843-52 - PubMed
  20. J Appl Physiol (1985). 2007 Nov;103(5):1513-22 - PubMed
  21. Am J Physiol Endocrinol Metab. 2013 Oct 15;305(8):E964-74 - PubMed
  22. Eur J Biochem. 1987 Apr 1;164(1):197-203 - PubMed
  23. J Physiol. 2013 Jul 15;591(14 ):3625-36 - PubMed
  24. Cell. 2014 Nov 6;159(4):738-49 - PubMed
  25. EMBO J. 2008 Jan 23;27(2):433-46 - PubMed
  26. Science. 2011 Jan 28;331(6016):456-61 - PubMed
  27. Autophagy. 2016;12 (2):369-80 - PubMed
  28. Annu Rev Cell Dev Biol. 2011;27:107-32 - PubMed
  29. Exerc Sport Sci Rev. 2012 Jul;40(3):159-64 - PubMed
  30. Am J Physiol Regul Integr Comp Physiol. 2013 Mar 15;304(6):R450-8 - PubMed
  31. Methods Mol Biol. 2008;445:77-88 - PubMed
  32. PLoS Biol. 2010 Jan 26;8(1):e1000298 - PubMed
  33. Science. 2006 Jun 16;312(5780):1650-3 - PubMed
  34. Am J Physiol Regul Integr Comp Physiol. 2015 Sep;309(5):R603-12 - PubMed
  35. Curr Opin Cell Biol. 2010 Apr;22(2):181-5 - PubMed
  36. Am J Physiol Regul Integr Comp Physiol. 2010 Apr;298(4):R912-7 - PubMed
  37. Physiol Genomics. 2009 Mar 3;37(1):58-66 - PubMed
  38. Cell Metab. 2011 May 4;13(5):495-504 - PubMed
  39. Exerc Sport Sci Rev. 2004 Jan;32(1):4-8 - PubMed
  40. Sports Med. 2014 Mar;44(3):303-9 - PubMed
  41. Circ Res. 2009 Sep 25;105(7):705-12, 11 p following 712 - PubMed
  42. Nat Rev Mol Cell Biol. 2015 Jul;16(7):393-405 - PubMed
  43. J Biol Chem. 2011 Mar 25;286(12 ):10605-17 - PubMed
  44. FASEB J. 2015 Aug;29(8):3515-26 - PubMed
  45. Am J Physiol Regul Integr Comp Physiol. 2011 Jun;300(6):R1303-10 - PubMed

Publication Types