Display options
Share it on

Exp Ther Med. 2016 May;11(5):1685-1699. doi: 10.3892/etm.2016.3130. Epub 2016 Mar 02.

Selected gene profiles of stressed NSC-34 cells and rat spinal cord following peripheral nerve reconstruction and minocycline treatment.

Experimental and therapeutic medicine

Gerburg Keilhoff, Benjamin Lucas, Katja Uhde, Hisham Fansa

Affiliations

  1. Institute of Biochemistry and Cell Biology, Otto-Von-Guericke University Magdeburg, Magdeburg D-39120, Germany.
  2. Institute of Biochemistry and Cell Biology, Otto-Von-Guericke University Magdeburg, Magdeburg D-39120, Germany; Department of Trauma Surgery, Otto-Von-Guericke University Magdeburg, Magdeburg D-39120, Germany.
  3. Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Klinikum Bielefeld, Bielefeld D-33604, Germany.

PMID: 27168790 PMCID: PMC4840837 DOI: 10.3892/etm.2016.3130

Abstract

The present study was conducted to investigate the effects of minocycline on the expression of selected transcriptional and translational profiles in the rat spinal cord following sciatic nerve (SNR) transection and microsurgical coaptation. The mRNA and protein expression levels of B cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), caspase-3, major histocompatibility complex I (MHC I), tumor necrosis factor-α (TNF-α), activating transcription factor 3 (ATF3), vascular endothelial growth factor (VEGF), matrix metalloproteinase 9 (MMP9), and growth associated protein-43 (GAP-43) were monitored in the rat lumbar spinal cord following microsurgical reconstruction of the sciatic nerves and minocycline treatment. The present study used semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. As a PCR analysis of spinal cord tissue enabled the examination of the expression patterns of all cell types including glia, the motorneuron-like NSC-34 cell line was used to investigate expression level changes in motorneurons. As stressors, oxygen glucose deprivation (OGD) and lipopolysaccharide (LPS) treatment were performed. SNR did not induce significant degeneration of ventral horn motorneurons, whereas microglia activation and synaptic terminal retraction were detectable. All genes were constitutively expressed at the mRNA and protein levels in untreated spinal cord and control cells. SNR significantly increased the mRNA expression levels of all genes, albeit only temporarily. In all genes except MMP9 and GAP-43, the induction was seen ipsilaterally and contralaterally. The effects of minocycline were moderate. The expression levels of MMP9, TNF-α, MHC I, VEGF, and GAP-43 were reduced, whereas those of Bax and Bcl-2 were unaffected. OGD, but not LPS, was toxic for NSC-34 cells. No changes in the expression levels of Bax, caspase-3, MHC I or ATF3 were observed. These results indicated that motorneurons were not preferentially or solely responsible for SNR-mediated upregulation of these genes. MMP9, TNF-α, VEGF and Bcl-2 were stress-activated. These results suggest that a substantial participation of motorneurons in gene expression levels

Keywords: NSC-34 cell line; immunohistochemistry; lipopolysaccharide; oxygen glucose deprivation; reverse transcription-polymerase chain reaction

References

  1. Nat Immunol. 2013 Mar;14(3):254-61 - PubMed
  2. Cell Mol Neurobiol. 2013 Nov;33(8):1087-98 - PubMed
  3. Br J Pharmacol. 2013 May;169(2):337-52 - PubMed
  4. Scand J Plast Reconstr Surg Hand Surg. 1999 Sep;33(3):267-72 - PubMed
  5. J Physiol. 1985 Mar;360:387-96 - PubMed
  6. Exp Neurol. 2004 Sep;189(1):1-4 - PubMed
  7. Neurol Res. 2008 Dec;30(10):999-1011 - PubMed
  8. Curr Top Med Chem. 2013;13(18):2283-90 - PubMed
  9. J Neurocytol. 2000 Apr;29(4):271-83 - PubMed
  10. J Hand Surg Eur Vol. 2011 Nov;36(9):730-4 - PubMed
  11. Clin Neuropharmacol. 2004 Nov-Dec;27(6):293-8 - PubMed
  12. Mol Neurobiol. 2014 Feb;49(1):563-73 - PubMed
  13. J Histochem Cytochem. 2015 Mar;63(3):170-80 - PubMed
  14. Brain Res. 1992 Mar 6;574(1-2):291-306 - PubMed
  15. Mol Cancer Res. 2013 Oct;11(10):1279-91 - PubMed
  16. Neurosurgery. 2013 Feb;72(2):N17-9 - PubMed
  17. Cell Mol Neurobiol. 2011 Oct;31(7):1057-69 - PubMed
  18. J Neuroimmunol. 2005 Aug;165(1-2):83-91 - PubMed
  19. Brain. 2003 Jul;126(Pt 7):1628-37 - PubMed
  20. Spine (Phila Pa 1976). 2002 Sep 1;27(17 ):1946-9 - PubMed
  21. Neurol Res. 2014 Sep;36(9):814-23 - PubMed
  22. Brain Res. 1996 Nov 11;739(1-2):244-50 - PubMed
  23. J Neuroinflammation. 2010 Nov 12;7:77 - PubMed
  24. Toxicol Appl Pharmacol. 2012 Jan 15;258(2):208-15 - PubMed
  25. Brain Res. 2008 Dec 3;1243:146-51 - PubMed
  26. Brain Behav Immun. 2007 Jul;21(5):617-23 - PubMed
  27. J Neurosci. 2007 Jul 25;27(30):7911-20 - PubMed
  28. J Neuroimmune Pharmacol. 2014 Mar;9(2):133-41 - PubMed
  29. Curr Opin Pharmacol. 2009 Feb;9(1):9-14 - PubMed
  30. Acta Histochem. 2014 Jun;116(5):820-30 - PubMed
  31. J Chin Med Assoc. 2013 Apr;76(4):201-10 - PubMed
  32. Mov Disord. 2005 Apr;20(4):510-1; author reply 511 - PubMed
  33. Exp Neurol. 2003 Jun;181(2):241-57 - PubMed
  34. Free Radic Res. 2012 Aug;46(8):940-50 - PubMed
  35. Mol Med Rep. 2012 Oct;6(4):774-8 - PubMed
  36. J Neurochem. 2009 Feb;108(3):578-90 - PubMed
  37. Iran J Med Sci. 2013 Sep;38(3):255-62 - PubMed
  38. J Neuroinflammation. 2013 Jun 21;10:75 - PubMed
  39. Front Neurol. 2011 May 17;2:30 - PubMed
  40. J Neuropathol Exp Neurol. 1979 Nov;38(6):579-85 - PubMed
  41. Neurotox Res. 2011 May;19(4):649-59 - PubMed
  42. Front Mol Neurosci. 2012 Feb 14;5:7 - PubMed
  43. Oncol Rep. 2010 Mar;23(3):725-32 - PubMed
  44. J Virol. 2002 Oct;76(20):10393-400 - PubMed
  45. Curr Opin Pharmacol. 2016 Feb;26:124-30 - PubMed
  46. Synapse. 2008 Feb;62(2):137-48 - PubMed
  47. Retrovirology. 2012 Feb 15;9:16 - PubMed
  48. Biochem Soc Trans. 2009 Dec;37(Pt 6):1147-60 - PubMed
  49. Int J Neurosci. 2003 Sep;113(9):1163-75 - PubMed
  50. ASN Neuro. 2013 Dec 23;5(5):e00131 - PubMed
  51. Arch Toxicol. 2014 Mar;88(3):659-71 - PubMed
  52. Mol Cell Neurosci. 2000 Feb;15(2):170-82 - PubMed
  53. Ann Anat. 1992 Oct;174(5):393-403 - PubMed
  54. Stem Cells. 2012 Dec;30(12):2700-8 - PubMed
  55. J Leukoc Biol. 2009 Mar;85(3):352-70 - PubMed
  56. Proc Natl Acad Sci U S A. 1999 Nov 9;96(23):13496-500 - PubMed
  57. Neuropathol Appl Neurobiol. 2011 Oct;37(6):613-32 - PubMed
  58. Mol Neurobiol. 2016 Jan;53(1):695-705 - PubMed
  59. PLoS One. 2012;7(8):e42332 - PubMed
  60. BMC Mol Biol. 2008 May 28;9:53 - PubMed
  61. Eur Neuropsychopharmacol. 2015 Jan;25(1):124-32 - PubMed
  62. J Neurobiol. 2002 Feb 15;50(3):181-97 - PubMed
  63. Exp Neurol. 2004 Sep;189(1):58-65 - PubMed
  64. Chin J Traumatol. 2005 Feb;8(1):17-22 - PubMed
  65. Arch Med Res. 2010 Oct;41(7):513-8 - PubMed
  66. Exp Neurol. 2015 Feb;264:26-32 - PubMed
  67. Neuroscientist. 2005 Aug;11(4):308-22 - PubMed
  68. J Neuroimmunol. 2014 May 15;270(1-2):29-36 - PubMed
  69. BMC Neurol. 2004 Apr 26;4:7 - PubMed
  70. BMC Neurosci. 2009 Oct 06;10 :126 - PubMed
  71. Neuroreport. 1997 Sep 8;8(13):2837-40 - PubMed
  72. PLoS One. 2013 Aug 13;8(8):e73422 - PubMed
  73. Nucleic Acids Res. 2010 Jan;38(1):48-59 - PubMed
  74. Arch Biochem Biophys. 2014 Mar 1;545:74-82 - PubMed
  75. Trends Neurosci. 2006 Feb;29(2):68-74 - PubMed
  76. Cell Death Differ. 2009 Apr;16(4):543-54 - PubMed
  77. Brain Res. 2008 Jan 2;1187:20-32 - PubMed
  78. Neurochem Res. 2008 Nov;33(11):2214-21 - PubMed
  79. Dev Dyn. 1992 Jul;194(3):209-21 - PubMed
  80. Methods Mol Biol. 2012;846:383-91 - PubMed
  81. Biochim Biophys Acta. 2012 Apr;1820(4):503-10 - PubMed
  82. Exp Eye Res. 2013 Aug;113:105-16 - PubMed
  83. Mol Pain. 2010 Apr 09;6:19 - PubMed
  84. Eur J Neurosci. 1991;3(8):737-757 - PubMed
  85. Int J Clin Exp Pathol. 2012;5(9):948-55 - PubMed
  86. Free Radic Biol Med. 2009 Apr 15;46(8):1127-38 - PubMed
  87. Brain Res. 1995 Aug 28;690(1):55-63 - PubMed
  88. Brain Res. 2014 Oct 24;1586:1-11 - PubMed
  89. Neuropharmacology. 2015 Sep;96(Pt A):113-23 - PubMed
  90. Neuroscience. 2014 Jun 6;269:93-101 - PubMed
  91. J Neurosci. 1986 Jun;6(6):1843-55 - PubMed
  92. Proc Natl Acad Sci U S A. 2004 Mar 2;101(9):3071-6 - PubMed
  93. Neuroscience. 2013 Oct 10;250:129-39 - PubMed
  94. Arch Neurol. 1991 Dec;48(12):1244-6 - PubMed
  95. J Biol Chem. 2012 Jul 27;287(31):25869-80 - PubMed
  96. Chem Res Toxicol. 2012 Aug 20;25(8):1762-70 - PubMed
  97. Mayo Clin Proc. 1999 Jul;74(7):727-9 - PubMed
  98. J Pharmacol Exp Ther. 2003 Aug;306(2):624-30 - PubMed
  99. J Mol Cell Cardiol. 2005 Dec;39(6):955-63 - PubMed
  100. Neurotox Res. 2010 Jan;17(1):50-65 - PubMed
  101. Eur Arch Otorhinolaryngol. 1994;251(7):410-7 - PubMed
  102. Spine (Phila Pa 1976). 2004 May 15;29(10):1082-8 - PubMed
  103. BMC Neurosci. 2014 Jul 24;15:92 - PubMed
  104. Brain Res. 2008 Oct 31;1238:23-30 - PubMed
  105. Graefes Arch Clin Exp Ophthalmol. 2014 May;252(5):761-72 - PubMed
  106. Exp Neurol. 2008 May;211(1):41-51 - PubMed
  107. Nat Commun. 2014 Jul 11;5:4294 - PubMed
  108. Neurol Sci. 2005 Oct;26(4):285-7 - PubMed
  109. J Neurochem. 2007 Jul;102(1):170-8 - PubMed
  110. Neuroscience. 1989;33(3):587-604 - PubMed
  111. Dev Neurobiol. 2007 Sep 1;67(10):1382-95 - PubMed
  112. Rev Neurosci. 2013;24(5):553-62 - PubMed
  113. J Neurosci. 2013 Sep 18;33(38):15095-108 - PubMed
  114. Exp Neurol. 2010 Sep;225(1):219-30 - PubMed
  115. Neuroreport. 1993 Nov 18;5(2):129-32 - PubMed
  116. J Neurosci Res. 2013 Sep;91(9):1152-64 - PubMed

Publication Types