Display options
Share it on

Sci Rep. 2016 Jun 08;6:27494. doi: 10.1038/srep27494.

Purification of Nanoparticles by Size and Shape.

Scientific reports

James D Robertson, Loris Rizzello, Milagros Avila-Olias, Jens Gaitzsch, Claudia Contini, Monika S Magoń, Stephen A Renshaw, Giuseppe Battaglia

Affiliations

  1. Department of Chemistry, University College London, London, United Kingdom.
  2. Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom.
  3. Department of Infection and Immunity, University of Sheffield, Sheffield, United Kingdom.
  4. MRC Centre for Developmental and Biomedical Genetics, University of Sheffield, Sheffield, United Kingdom.
  5. Department of Chemistry, University of Basel, Basel, Switzerland.
  6. London Interdisciplinary Biosciences Consortium, Division of Biosciences, University College London, London, United Kingdom.

PMID: 27271538 PMCID: PMC4897710 DOI: 10.1038/srep27494

Abstract

Producing monodisperse nanoparticles is essential to ensure consistency in biological experiments and to enable a smooth translation into the clinic. Purification of samples into discrete sizes and shapes may not only improve sample quality, but also provide us with the tools to understand which physical properties of nanoparticles are beneficial for a drug delivery vector. In this study, using polymersomes as a model system, we explore four techniques for purifying pre-formed nanoparticles into discrete fractions based on their size, shape or density. We show that these techniques can successfully separate polymersomes into monodisperse fractions.

References

  1. ACS Nano. 2014 May 27;8(5):4650-61 - PubMed
  2. J Am Chem Soc. 2011 Oct 19;133(41):16581-7 - PubMed
  3. Nano Lett. 2006 Apr;6(4):662-8 - PubMed
  4. Int J Pharm. 2006 Jan 3;307(1):93-102 - PubMed
  5. J Am Chem Soc. 2005 Dec 28;127(51):17982-3 - PubMed
  6. Biochim Biophys Acta. 2001 Aug 6;1513(2):207-16 - PubMed
  7. Angew Chem Int Ed Engl. 2006 Mar 20;45(13):2052-6 - PubMed
  8. Biochim Biophys Acta. 2007 Jun;1768(6):1518-25 - PubMed
  9. Anal Chem. 2006 Dec 15;78(24):8313-8 - PubMed
  10. Science. 1999 May 14;284(5417):1143-6 - PubMed
  11. J Chromatogr A. 2014 Jul 4;1349:44-9 - PubMed
  12. Anal Chem. 1999 Jun 1;71(11):2085-91 - PubMed
  13. J Chromatogr A. 2011 Jun 24;1218(25):3823-9 - PubMed
  14. Curr Opin Pharmacol. 2014 Oct;18:104-11 - PubMed
  15. J Am Chem Soc. 2006 Mar 15;128(10):3190-7 - PubMed
  16. Ther Deliv. 2013 Jan;4(1):27-43 - PubMed
  17. Nano Lett. 2007 Sep;7(9):2881-5 - PubMed
  18. Biomater Sci. 2014 Apr 1;2(5):680-92 - PubMed
  19. J Phys Chem B. 2006 Jun 1;110(21):10272-9 - PubMed
  20. Langmuir. 2006 May 23;22(11):4910-3 - PubMed
  21. Angew Chem Int Ed Engl. 2009;48(5):939-42 - PubMed
  22. Biochem J. 1988 Nov 15;256(1):1-11 - PubMed
  23. Nat Mater. 2005 Nov;4(11):869-76 - PubMed
  24. Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):4981-5 - PubMed
  25. J Am Chem Soc. 2006 Jul 12;128(27):8899-903 - PubMed
  26. J Am Chem Soc. 2005 Jun 22;127(24):8757-64 - PubMed
  27. Proc Natl Acad Sci U S A. 2010 Jun 22;107(25):11205-10 - PubMed
  28. Nat Nanotechnol. 2011 Mar;6(3):141-6 - PubMed
  29. BMC Biotechnol. 2005 May 10;5:11 - PubMed
  30. Anal Chim Acta. 2009 Jul 10;645(1-2):79-85 - PubMed
  31. Anal Chem. 2005 Aug 1;77(15):5055-62 - PubMed

Publication Types

Grant support