Display options
Share it on

Front Microbiol. 2016 May 03;7:629. doi: 10.3389/fmicb.2016.00629. eCollection 2016.

The incC Sequence Is Required for R27 Plasmid Stability.

Frontiers in microbiology

Eleonora Tassinari, Sonia Aznar, Imanol Urcola, Alejandro Prieto, Mário Hüttener, Antonio Juárez

Affiliations

  1. Institut de Bioenginyeria de Catalunya Barcelona, Spain.
  2. Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona Barcelona, Spain.
  3. Institut de Bioenginyeria de CatalunyaBarcelona, Spain; Departament de Microbiologia, Facultat de Biologia, Universitat de BarcelonaBarcelona, Spain.

PMID: 27199955 PMCID: PMC4853401 DOI: 10.3389/fmicb.2016.00629

Abstract

IncHI plasmids account for multiple antimicrobial resistance in Salmonella and other enterobacterial genera. These plasmids are generally very stable in their bacterial hosts. R27 is the archetype of IncHI1 plasmids. A high percentage of the R27-encoded open reading frames (ORFs) (66.7%) do not show similarity to any known ORFs. We performed a deletion analysis of all non-essential R27 DNA sequences to search for hitherto non-identified plasmid functions that might be required for plasmid stability. We report the identification of a short DNA sequence (incC) that is essential for R27 stability. That region contains several repeats (incC repeats), belongs to one of the three-plasmid replicons (R27 FIA-like) and is targeted by the R27 E protein. Deletion of the incC sequence drastically reduces R27 stability both in Escherichia coli and in Salmonella, the effect being more pronounced in this latter species. Interfering with incC-E protein interaction must lead to a reduced IncHI1 plasmid stability, and may represent a new approach to combat antimicrobial resistance.

Keywords: E protein; IncHI1 plasmids; antimicrobial resistance; incC; plasmid R27; plasmid stability

References

  1. Infect Immun. 2011 Jul;79(7):2502-9 - PubMed
  2. Appl Environ Microbiol. 2007 Mar;73(6):1976-83 - PubMed
  3. Environ Microbiol. 2014 Apr;16(4):950-62 - PubMed
  4. J Antimicrob Chemother. 2012 Jul;67(7):1645-50 - PubMed
  5. J Bacteriol. 1993 Dec;175(23):7697-701 - PubMed
  6. Methods Enzymol. 1991;204:63-113 - PubMed
  7. J Bacteriol. 2002 Apr;184(8):2173-80 - PubMed
  8. Int J Med Microbiol. 2013 Aug;303(6-7):298-304 - PubMed
  9. Plasmid. 2004 Nov;52(3):182-202 - PubMed
  10. Mol Microbiol. 1988 Mar;2(2):219-25 - PubMed
  11. PLoS Negl Trop Dis. 2011 Jul;5(7):e1245 - PubMed
  12. Mol Microbiol. 1994 Feb;11(4):757-68 - PubMed
  13. Appl Environ Microbiol. 2008 Nov;74(22):7043-50 - PubMed
  14. Curr Biol. 2009 Nov 3;19(20):1683-91 - PubMed
  15. J Antimicrob Chemother. 2013 Jan;68(1):34-9 - PubMed
  16. J Bacteriol. 1993 Apr;175(8):2175-83 - PubMed
  17. Nucleic Acids Res. 2000 May 15;28(10):2177-86 - PubMed
  18. Annu Rev Genet. 1989;23:37-69 - PubMed
  19. Antimicrob Agents Chemother. 2011 Aug;55(8):3649-60 - PubMed
  20. J Mol Biol. 1990 Oct 5;215(3):403-10 - PubMed
  21. Cold Spring Harb Symp Quant Biol. 1981;45 Pt 1:135-40 - PubMed
  22. Genetics. 2003 Dec;165(4):1641-9 - PubMed
  23. Microbiology. 2005 Nov;151(Pt 11):3563-73 - PubMed
  24. Infect Immun. 1987 Dec;55(12):2891-901 - PubMed
  25. J Mol Biol. 1986 May 5;189(1):113-30 - PubMed
  26. Mol Gen Genet. 1972;119(4):287-97 - PubMed
  27. Mol Gen Genet. 2000 Mar;263(2):349-58 - PubMed
  28. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5 - PubMed
  29. Plasmid. 1994 Mar;31(2):111-20 - PubMed

Publication Types