Display options
Share it on

Front Plant Sci. 2016 May 03;7:566. doi: 10.3389/fpls.2016.00566. eCollection 2016.

Orthology Analysis and In Vivo Complementation Studies to Elucidate the Role of DIR1 during Systemic Acquired Resistance in Arabidopsis thaliana and Cucumis sativus.

Frontiers in plant science

Marisa Isaacs, Philip Carella, Jennifer Faubert, Jocelyn K C Rose, Robin K Cameron

Affiliations

  1. Department of Biology, McMaster University, Hamilton ON, Canada.
  2. Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca NY, USA.

PMID: 27200039 PMCID: PMC4854023 DOI: 10.3389/fpls.2016.00566

Abstract

AtDIR1 (Defective in Induced Resistance1) is an acidic lipid transfer protein essential for systemic acquired resistance (SAR) in Arabidopsis thaliana. Upon SAR induction, DIR1 moves from locally infected to distant uninfected leaves to activate defense priming; however, a molecular function for DIR1 has not been elucidated. Bioinformatic analysis and in silico homology modeling identified putative AtDIR1 orthologs in crop species, revealing conserved protein motifs within and outside of DIR1's central hydrophobic cavity. In vitro assays to compare the capacity of recombinant AtDIR1 and targeted AtDIR1-variant proteins to bind the lipophilic probe TNS (6,P-toluidinylnaphthalene-2-sulfonate) provided evidence that conserved leucine 43 and aspartic acid 39 contribute to the size of the DIR1 hydrophobic cavity and possibly hydrophobic ligand binding. An Arabidopsis-cucumber SAR model was developed to investigate the conservation of DIR1 function in cucumber (Cucumis sativus), and we demonstrated that phloem exudates from SAR-induced cucumber rescued the SAR defect in the Arabidopsis dir1-1 mutant. Additionally, an AtDIR1 antibody detected a protein of the same size as AtDIR1 in SAR-induced cucumber phloem exudates, providing evidence that DIR1 function during SAR is conserved in Arabidopsis and cucumber. In vitro TNS displacement assays demonstrated that recombinant AtDIR1 did not bind the SAR signals azelaic acid (AzA), glycerol-3-phosphate or pipecolic acid. However, recombinant CsDIR1 and CsDIR2 interacted weakly with AzA and pipecolic acid. Bioinformatic and functional analyses using the Arabidopsis-cucumber SAR model provide evidence that DIR1 orthologs exist in tobacco, tomato, cucumber, and soybean, and that DIR1-mediated SAR signaling is conserved in Arabidopsis and cucumber.

Keywords: DIR1; cucumber; hydrophobic cavity; lipid transfer protein; long-distance signaling; systemic acquired resistance

References

  1. Mol Biol Cell. 2004 Nov;15(11):5047-52 - PubMed
  2. Nucleic Acids Res. 2009 Jan;37(Database issue):D387-92 - PubMed
  3. Plant Physiol. 2014 Feb;164(2):1045-58 - PubMed
  4. Acta Crystallogr D Biol Crystallogr. 2005 Apr;61(Pt 4):397-406 - PubMed
  5. Biochim Biophys Acta. 1992 May 22;1121(1-2):137-52 - PubMed
  6. BMC Plant Biol. 2011 Sep 06;11:125 - PubMed
  7. Front Plant Sci. 2013 Feb 22;4:30 - PubMed
  8. Bioinformatics. 2006 Jan 15;22(2):195-201 - PubMed
  9. Plant J. 2014 Aug;79(4):645-58 - PubMed
  10. Mol Plant. 2011 Nov;4(6):947-64 - PubMed
  11. Plant Cell. 2009 Apr;21(4):1230-8 - PubMed
  12. Plant J. 2008 Nov;56(3):445-56 - PubMed
  13. Mol Biol Evol. 2011 Oct;28(10):2731-9 - PubMed
  14. Evolution. 1985 Jul;39(4):783-791 - PubMed
  15. Nature. 2002 Sep 26;419(6905):399-403 - PubMed
  16. Biochem J. 1994 Jan 15;297 ( Pt 2):249-60 - PubMed
  17. Plant Cell. 2012 Dec;24(12 ):5123-41 - PubMed
  18. Plant J. 2008 Apr;54(1):106-17 - PubMed
  19. Plant Physiol Biochem. 2008 Feb;46(2):140-9 - PubMed
  20. Biochem Biophys Res Commun. 1998 Apr 7;245(1):133-9 - PubMed
  21. Plant J. 2012 May;70(3):480-91 - PubMed
  22. J Exp Bot. 2014 Nov;65(20):5919-31 - PubMed
  23. Nat Methods. 2011 Sep 29;8(10):785-6 - PubMed
  24. Mol Biol Evol. 2012 Aug;29(8):1969-73 - PubMed
  25. Biochemistry. 1966 Jun;5(6):1908-19 - PubMed
  26. Protein Sci. 2008 Feb;17(2):191-8 - PubMed
  27. Genome Res. 2004 Jun;14(6):1188-90 - PubMed
  28. Plant Biol (Stuttg). 2015 Mar;17(2):395-401 - PubMed
  29. J Biol Chem. 2006 Dec 22;281(51):38981-8 - PubMed
  30. Cell Rep. 2013 Apr 25;3(4):1266-78 - PubMed
  31. Nucleic Acids Res. 2012 Jan;40(Database issue):D1178-86 - PubMed
  32. Biochem J. 2005 Sep 15;390(Pt 3):641-53 - PubMed
  33. Plant Physiol. 2003 Oct;133(2):462-9 - PubMed
  34. Cell. 1997 Jan 10;88(1):57-63 - PubMed
  35. Front Plant Sci. 2012 Oct 08;3:224 - PubMed
  36. Trends Plant Sci. 2012 Sep;17(9):538-45 - PubMed
  37. Plant Physiol. 2003 Jun;132(2):840-7 - PubMed
  38. Plant Physiol. 1998 Jan;116(1):231-8 - PubMed
  39. Nat Commun. 2015 Jul 23;6:7658 - PubMed
  40. Plant Physiol. 1991 Dec;97(4):1342-7 - PubMed
  41. J Plant Physiol. 2009 Mar 15;166(5):543-7 - PubMed
  42. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006 Jul 1;62(Pt 7):702-4 - PubMed
  43. J Biol Chem. 2002 Sep 20;277(38):35267-73 - PubMed
  44. Science. 2009 Apr 3;324(5923):89-91 - PubMed
  45. Nat Genet. 2011 May;43(5):421-7 - PubMed
  46. J Exp Bot. 2011 Jan;62(3):963-73 - PubMed
  47. Protein Sci. 2008 Sep;17(9):1522-30 - PubMed
  48. J Mol Evol. 1980 Dec;16(2):111-20 - PubMed
  49. Annu Rev Plant Biol. 2013;64:839-63 - PubMed
  50. Plant Signal Behav. 2013 Nov;8(11):e26366 - PubMed
  51. Science. 2007 Oct 5;318(5847):113-6 - PubMed
  52. J Lab Clin Med. 1954 Aug;44(2):301-7 - PubMed
  53. Electrophoresis. 1997 Dec;18(15):2714-23 - PubMed
  54. Plant Physiol. 2011 Apr;155(4):1762-8 - PubMed
  55. Front Plant Sci. 2013 Jul 04;4:230 - PubMed
  56. Plant Cell. 1991 Jan;3(1):49-59 - PubMed
  57. Plant J. 2012 Jul;71(1):161-72 - PubMed
  58. BMC Bioinformatics. 2009 Oct 27;10:356 - PubMed
  59. Nucleic Acids Res. 1990 Oct 25;18(20):6097-100 - PubMed
  60. Proteins. 2008 Feb 15;70(3):695-706 - PubMed
  61. Nucleic Acids Res. 2003 Jul 1;31(13):3381-5 - PubMed
  62. J Exp Bot. 2013 Apr;64(6):1755-67 - PubMed
  63. Plant Cell. 2001 Nov;13(11):2499-512 - PubMed
  64. Front Microbiol. 2014 Apr 17;5:172 - PubMed

Publication Types