Display options
Share it on

Clin Transl Med. 2016 Dec;5(1):18. doi: 10.1186/s40169-016-0098-1. Epub 2016 May 16.

Diagnostic yield of array CGH in patients with autism spectrum disorder in Hong Kong.

Clinical and translational medicine

Wai-Kwan Siu, Ching-Wan Lam, Chloe Miu Mak, Elizabeth Tak-Kwong Lau, Mary Hoi-Yin Tang, Wing-Fai Tang, Rachel Sui-Man Poon-Mak, Chi-Chiu Lee, Se-Fong Hung, Patrick Wing-Leung Leung, Karen Ling Kwong, Eric Kin-Cheong Yau, Grace Sui-Fun Ng, Nai-Chung Fong, Kwok-Yin Chan

Affiliations

  1. Department of Pathology, The University of Hong Kong, 102 Pokfulam Road, Hong Kong, China.
  2. Kowloon West Cluster Laboratory Genetics Service, Department of Pathology, Princess Margaret Hospital, Hong Kong, China.
  3. Department of Pathology, The University of Hong Kong, 102 Pokfulam Road, Hong Kong, China. [email protected].
  4. Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China.
  5. Department of Clinical Psychology, Kwai Chung Hospital, Hong Kong, China.
  6. Department of Psychiatry, Kwai Chung Hospital, Hong Kong, China.
  7. Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China.
  8. Department of Paediatrics and Adolescent Medicine, Tuen Mun Hospital, Hong Kong, China.
  9. Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, China.

PMID: 27271878 PMCID: PMC4896892 DOI: 10.1186/s40169-016-0098-1

Abstract

BACKGROUND: Chromosomal microarray offers superior sensitivity for identification of submicroscopic copy number variants (CNV) and it is advocated to be the first tier genetic testing for patients with autism spectrum disorder (ASD). In this regard, diagnostic yield of array comparative genomic hybridization (CGH) for ASD patients is determined in a cohort of Chinese patients in Hong Kong.

METHODS: A combined adult and paediatric cohort of 68 Chinese ASD patients (41 patients in adult group and 27 patients in paediatric group). The genomic DNA extracted from blood samples were analysed by array CGH using NimbleGen CGX-135K oligonucleotide array.

RESULTS: We identified 15 CNV and eight of them were clinically significant. The overall diagnostic yield was 11.8 %. Five clinically significant CNV were detected in the adult group and three were in the paediatric group, providing diagnostic yields of 12.2 and 11.1 % respectively. The most frequently detected CNV was 16p13.11 duplications which were present in 4 patients (5.9 % of the cohort).

CONCLUSIONS: In this study, a satisfactory diagnostic yield of array CGH was demonstrated in a Chinese ASD patient cohort which supported the clinical usefulness of array CGH as the first line testing of ASD in Hong Kong.

Keywords: ARRAY CGH; Autism spectrum disorder; Chinese

References

  1. Autism Res. 2012 Jun;5(3):160-79 - PubMed
  2. Am J Hum Genet. 2014 May 1;94(5):677-94 - PubMed
  3. Nat Genet. 2014 Oct;46(10):1063-71 - PubMed
  4. Hum Genet. 2010 Aug;128(2):155-64 - PubMed
  5. Science. 2007 Apr 20;316(5823):445-9 - PubMed
  6. Am J Hum Genet. 2010 May 14;86(5):749-64 - PubMed
  7. J Clin Endocrinol Metab. 2012 Nov;97(11):E2140-51 - PubMed
  8. Nat Rev Neurosci. 2012 Jan 18;13(2):107-20 - PubMed
  9. Am J Hum Genet. 2008 Jan;82(1):150-9 - PubMed
  10. Genet Med. 2011 Jul;13(7):680-5 - PubMed
  11. Mol Cytogenet. 2015 Dec 18;8:96 - PubMed
  12. Neuropsychopharmacology. 2015 Jan;40(1):16-23 - PubMed
  13. Curr Top Behav Neurosci. 2014;16:19-48 - PubMed
  14. Eur J Paediatr Neurol. 2013 Nov;17(6):589-99 - PubMed
  15. Hum Genet. 2014 Feb;133(2):199-209 - PubMed
  16. Am J Med Genet A. 2005 Oct 1;138A(2):185-6 - PubMed
  17. Hum Genet. 2011 Oct;130(4):517-28 - PubMed
  18. Am J Hum Genet. 2013 Feb 7;92(2):221-37 - PubMed
  19. Pediatrics. 2010 Apr;125(4):e727-35 - PubMed
  20. BMC Med Genet. 2005 Jan 18;6:3 - PubMed
  21. Am J Hum Genet. 2008 Feb;82(2):477-88 - PubMed
  22. Nat Genet. 2011 Aug 14;43(9):838-46 - PubMed
  23. J Autism Dev Disord. 2012 Aug;42(8):1582-91 - PubMed
  24. J Med Genet. 2009 Apr;46(4):223-32 - PubMed
  25. J Hum Genet. 2011 Jul;56(7):541-4 - PubMed
  26. Am J Hum Genet. 2009 Nov;85(5):655-66 - PubMed
  27. Pathology. 2014 Jan;46(1):41-5 - PubMed
  28. Am J Med Genet A. 2009 Jul;149A(7):1431-7 - PubMed
  29. J Med Genet. 2015 Oct;52(10 ):706-9 - PubMed
  30. JAMA. 2015 Sep 1;314(9):895-903 - PubMed
  31. PLoS One. 2014 Feb 05;9(2):e87988 - PubMed
  32. Behav Brain Res. 2016 Mar 1;300:135-42 - PubMed
  33. Neuron. 2015 Mar 4;85(5):998-1012 - PubMed
  34. Nat Genet. 2014 Aug;46(8):881-5 - PubMed
  35. Yonsei Med J. 2015 Nov;56(6):1742-4 - PubMed
  36. Eur J Med Genet. 2009 Mar-Jun;52(2-3):108-15 - PubMed
  37. Mol Cytogenet. 2013 Dec 20;6(1):62 - PubMed
  38. Nat Neurosci. 2015 Feb;18(2):191-8 - PubMed
  39. PLoS One. 2013 Apr 18;8(4):e61365 - PubMed
  40. Gene. 2014 Feb 1;535(1):70-8 - PubMed
  41. Hum Mutat. 2007 Jul;28(7):674-82 - PubMed
  42. Am J Med Genet A. 2010 May;152A(5):1079-88 - PubMed
  43. Mol Autism. 2010 Mar 19;1(1):5 - PubMed
  44. Eur J Med Genet. 2013 Aug;56(8):426-31 - PubMed
  45. Mol Psychiatry. 2011 Jan;16(1):17-25 - PubMed
  46. Nature. 2009 Oct 15;461(7266):947-55 - PubMed
  47. Mol Psychiatry. 2006 Jan;11(1):1, 18-28 - PubMed
  48. Cell. 2011 Sep 30;147(1):235-46 - PubMed
  49. J Autism Dev Disord. 2015 May;45(5):1230-7 - PubMed
  50. Curr Opin Neurobiol. 2014 Aug;27:82-8 - PubMed
  51. Nat Rev Genet. 2015 Mar;16(3):172-83 - PubMed
  52. Genome Res. 2009 Sep;19(9):1579-85 - PubMed
  53. Nature. 2010 Jul 15;466(7304):368-72 - PubMed
  54. Lancet. 2010 Oct 23;376(9750):1401-8 - PubMed

Publication Types