Display options
Share it on

Nat Commun. 2016 Jun 08;7:11749. doi: 10.1038/ncomms11749.

Optical modulation of nano-gap tunnelling junctions comprising self-assembled monolayers of hemicyanine dyes.

Nature communications

Parisa Pourhossein, Ratheesh K Vijayaraghavan, Stefan C J Meskers, Ryan C Chiechi

Affiliations

  1. Stratingh Institute for Chemistry, and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands.
  2. Molecular Materials and Nanosystems and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands.

PMID: 27272394 PMCID: PMC4899853 DOI: 10.1038/ncomms11749

Abstract

Light-driven conductance switching in molecular tunnelling junctions that relies on photoisomerization is constrained by the limitations of kinetic traps and either by the sterics of rearranging atoms in a densely packed monolayer or the small absorbance of individual molecules. Here we demonstrate light-driven conductance gating; devices comprising monolayers of hemicyanine dyes trapped between two metallic nanowires exhibit higher conductance under irradiation than in the dark. The modulation of the tunnelling current occurs faster than the timescale of the measurement (∼1 min). We propose a mechanism in which a fraction of molecules enters an excited state that brings the conjugated portion of the monolayer into resonance with the electrodes. This mechanism is supported by calculations showing the delocalization of molecular orbitals near the Fermi energy in the excited and cationic states, but not the ground state and a reasonable change in conductance with respect to the effective barrier width.

References

  1. Small. 2015 Dec;11(46):6115-41 - PubMed
  2. Science. 2014 Mar 28;343(6178):1496-9 - PubMed
  3. J Am Chem Soc. 2007 Apr 11;129(14):4336-49 - PubMed
  4. Adv Mater. 2016 Apr 20;28(15):2956-63 - PubMed
  5. ACS Nano. 2007 Oct;1(3):215-27 - PubMed
  6. Phys Chem Chem Phys. 2012 Jul 14;14(26):9421-38 - PubMed
  7. Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):9937-42 - PubMed
  8. Angew Chem Int Ed Engl. 2011 Sep 5;50(37):8566-83 - PubMed
  9. Nano Lett. 2011 Jul 13;11(7):2709-14 - PubMed
  10. Angew Chem Int Ed Engl. 2008;47(18):3407-9 - PubMed
  11. Chem Rev. 2000 Jun 14;100(6):1973-2012 - PubMed
  12. Nano Lett. 2015 Jan 14;15(1):635-40 - PubMed
  13. ACS Nano. 2012 Jun 26;6(6):5566-73 - PubMed
  14. J Am Chem Soc. 2004 Jun 9;126(22):7102-10 - PubMed
  15. J Vis Exp. 2013 May 13;(75):e50406 - PubMed
  16. ACS Appl Mater Interfaces. 2010 Sep;2(9):2503-14 - PubMed
  17. Adv Mater. 2013 Aug 14;25(30):4164-70 - PubMed
  18. Adv Mater. 2015 Feb 25;27(8):1426-31 - PubMed
  19. Nat Commun. 2013;4:1920 - PubMed
  20. Nat Commun. 2014;5:3023 - PubMed

Publication Types

Grant support