Display options
Share it on

Bioengineering (Basel). 2016 Mar;3(1). doi: 10.3390/bioengineering3010006.

Controlling Arteriogenesis and Mast Cells Are Central to Bioengineering Solutions for Critical Bone Defect Repair Using Allografts.

Bioengineering (Basel, Switzerland)

Ben Antebi, Longze Zhang, Dmitriy Sheyn, Gadi Pelled, Xinping Zhang, Zulma Gazit, Edward M Schwarz, Dan Gazit

Affiliations

  1. US Army Institute of Surgical Research, Multi-Organ Support Technology, 3698 Chambers Pass, Fort Sam Houston, TX 78234, USA.
  2. Center for Musculoskeletal Research, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA.
  3. Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
  4. Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Skeletal Biotech Laboratory, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem 91120, Israel.

PMID: 27141513 PMCID: PMC4851447 DOI: 10.3390/bioengineering3010006

Abstract

Although most fractures heal, critical defects in bone fail due to aberrant differentiation of mesenchymal stem cells towards fibrosis rather than osteogenesis. While conventional bioengineering solutions to this problem have focused on enhancing angiogenesis, which is required for bone formation, recent studies have shown that fibrotic non-unions are associated with arteriogenesis in the center of the defect and accumulation of mast cells around large blood vessels. Recently, recombinant parathyroid hormone (rPTH; teriparatide; Forteo) therapy have shown to have anti-fibrotic effects on non-unions and critical bone defects due to inhibition of arteriogenesis and mast cell numbers within the healing bone. As this new direction holds great promise towards a solution for significant clinical hurdles in craniofacial reconstruction and limb salvage procedures, this work reviews the current state of the field, and provides insights as to how teriparatide therapy could be used as an adjuvant for healing critical defects in bone. Finally, as teriparatide therapy is contraindicated in the setting of cancer, which constitutes a large subset of these patients, we describe early findings of adjuvant therapies that may present future promise by directly inhibiting arteriogenesis and mast cell accumulation at the defect site.

Keywords: arteriogenesis; critical bone defect; fibrosis; mast cells; osteogenesis; recombinant parathyroid hormone (rPTH; teriparatide; Forteo)

References

  1. Plast Reconstr Surg. 2011 Apr;127(4):1478-86 - PubMed
  2. J Histochem Cytochem. 1998 Oct;46(10):1119-28 - PubMed
  3. J Bone Joint Surg Br. 2011 Jan;93(1):131-9 - PubMed
  4. J Bone Joint Surg Am. 2011 Sep 7;93(17 ):1583-7 - PubMed
  5. Acta Orthop. 2010 Apr;81(2):234-6 - PubMed
  6. J Invest Dermatol. 2000 Jan;114(1):51-5 - PubMed
  7. Int Rev Cell Mol Biol. 2009;275:89-131 - PubMed
  8. J Cell Biochem. 2008 Sep 1;105(1):219-26 - PubMed
  9. Drug Discov Today. 2003 Nov 1;8(21):980-9 - PubMed
  10. J Bone Miner Res. 2009 Aug;24(8):1347-53 - PubMed
  11. Eur Respir Rev. 2014 Sep;23(133):299-307 - PubMed
  12. J Tissue Eng Regen Med. 2012 Nov;6(10):e43-50 - PubMed
  13. Clin Cases Miner Bone Metab. 2013 May;10(2):116-20 - PubMed
  14. Mol Ther. 2011 Aug;19(8):1416-25 - PubMed
  15. Blood. 2011 Nov 17;118(20):5383-93 - PubMed
  16. Int Arch Allergy Immunol. 1998 Jan;115(1):47-54 - PubMed
  17. J Bone Miner Res. 2015 Jul;30(7):1217-30 - PubMed
  18. Swiss Med Wkly. 2014 Sep 03;144:w13999 - PubMed
  19. Eur J Dermatol. 2002 Jul-Aug;12(4):340-6 - PubMed
  20. Crit Rev Biomed Eng. 2012;40(5):363-408 - PubMed
  21. Biomaterials. 2008 Jul;29(19):2915-22 - PubMed
  22. Eur Cell Mater. 2014 Oct 06;28:166-207; discussion 207-8 - PubMed
  23. J Bone Miner Res. 2013 Mar;28(3):586-97 - PubMed
  24. Am J Pathol. 1995 Sep;147(3):564-73 - PubMed
  25. Biotechnol J. 2015 Sep;10 (11):1727-38 - PubMed
  26. J Bone Miner Res. 2010 Feb;25(2):404-14 - PubMed
  27. J Bone Joint Surg Am. 2008 Feb;90 Suppl 1:120-7 - PubMed
  28. J Clin Invest. 1997 Jun 1;99(11):2691-700 - PubMed
  29. Development. 2007 Sep;134(17):3133-44 - PubMed
  30. FASEB J. 2006 Nov;20(13):2366-8 - PubMed
  31. J Cell Biochem. 2011 May;112(5):1441-9 - PubMed
  32. J Bone Miner Res. 2012 Sep;27(9):2001-14 - PubMed
  33. Orthop Clin North Am. 2010 Jan;41(1):15-26; table of contents - PubMed
  34. Osteoporos Int. 2003 Jan;14 (1):77-81 - PubMed
  35. Mol Biol Cell. 1998 Apr;9(4):875-84 - PubMed
  36. Physiol Rev. 1997 Oct;77(4):1033-79 - PubMed
  37. Bone. 2011 Mar 1;48(3):562-70 - PubMed
  38. Immunity. 2011 Feb 25;34(2):258-68 - PubMed
  39. J Bone Miner Res. 2007 Apr;22(4):495-502 - PubMed
  40. Exp Dermatol. 2013 Aug;22(8):507-10 - PubMed
  41. Rev Endocr Metab Disord. 2006 Jun;7(1-2):113-21 - PubMed
  42. Endocr Rev. 2005 Aug;26(5):688-703 - PubMed
  43. J Bone Miner Res. 2012 Jan;27(1):26-37 - PubMed
  44. N Engl J Med. 2010 Dec 16;363(25):2396-405 - PubMed
  45. Clin Orthop Relat Res. 2005 Jun;(435):36-42 - PubMed
  46. Curr Rheumatol Rep. 2003 Apr;5(2):147-53 - PubMed
  47. J Invest Dermatol. 2001 Nov;117(5):1113-9 - PubMed
  48. Tissue Eng Part B Rev. 2010 Feb;16(1):13-20 - PubMed
  49. J Am Geriatr Soc. 2006 May;54(5):782-9 - PubMed
  50. J Immunol. 1997 Mar 1;158(5):2310-7 - PubMed
  51. J Orthop Trauma. 1995;9(6):482-90 - PubMed
  52. Exp Lung Res. 2011 Mar;37(2):101-8 - PubMed
  53. Injury. 2011 Jun;42(6):551-5 - PubMed
  54. Drug Deliv Transl Res. 2016 Apr;6(2):96-104 - PubMed
  55. J Immunol. 2010 Dec 15;185(12):7681-90 - PubMed
  56. Bone. 2013 Jul;55(1):241-7 - PubMed
  57. J Biol Chem. 1997 Mar 14;272(11):7127-31 - PubMed
  58. Inflamm Res. 1996 Apr;45(4):176-80 - PubMed
  59. Int Arch Allergy Immunol. 2010;151(1):80-8 - PubMed
  60. J Bone Miner Res. 2003 Nov;18(11):1932-41 - PubMed
  61. Biomaterials. 2015 Sep;64:98-107 - PubMed
  62. J Orthop Sci. 2012 May;17(3):299-307 - PubMed
  63. J Spinal Disord Tech. 2010 Apr;23 (2):151-5 - PubMed
  64. N Engl J Med. 2002 Dec 12;347(24):1924-31 - PubMed
  65. J Biol Chem. 2011 Oct 28;286(43):37358-67 - PubMed
  66. Eur Cell Mater. 2014 Mar 25;27:196-212 - PubMed
  67. J Bone Miner Res. 2012 Dec;27(12):2429-37 - PubMed
  68. J Cell Biochem. 2007 Apr 1;100(5):1170-7 - PubMed
  69. J Bone Miner Res. 2009 May;24(5):899-907 - PubMed
  70. Immunity. 2012 Jul 27;37(1):13-24 - PubMed
  71. Nat Med. 2005 Mar;11(3):291-7 - PubMed
  72. J Biomed Mater Res A. 2015 Sep;103(9):2847-54 - PubMed
  73. Acta Orthop Scand. 1967;38(2):115-22 - PubMed
  74. Wound Repair Regen. 2004 May-Jun;12(3):269-75 - PubMed
  75. J Orthop Trauma. 2008 Sep;22(8):550-9 - PubMed
  76. Kidney Int. 2012 Sep;82(6):676-85 - PubMed
  77. Bone. 2013 Sep;56(1):9-15 - PubMed
  78. Arch Dermatol Res. 1985;277(1):60-4 - PubMed
  79. Nat Rev Drug Discov. 2003 Apr;2(4):257-8 - PubMed
  80. Crit Rev Immunol. 2011;31(6):475-529 - PubMed
  81. J Bone Miner Res. 2005 Dec;20(12 ):2124-37 - PubMed
  82. Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):9656-61 - PubMed
  83. Front Bioeng Biotechnol. 2015 Jun 02;3:79 - PubMed
  84. Nature. 2003 May 15;423(6937):332-6 - PubMed
  85. J Endocrinol Invest. 2012 Feb;35(2):139-45 - PubMed
  86. Wound Repair Regen. 2003 Jan-Feb;11(1):46-54 - PubMed
  87. Cell Mol Life Sci. 2005 Dec;62(23):2867-76 - PubMed
  88. Eur Cell Mater. 2008 May 02;15:100-14 - PubMed
  89. Am J Physiol Endocrinol Metab. 2001 Sep;281(3):E489-99 - PubMed
  90. Transgenic Res. 2008 Apr;17(2):307-15 - PubMed
  91. Am J Physiol Endocrinol Metab. 2014 Feb;306(3):E247-55 - PubMed
  92. PLoS One. 2015 Mar 31;10(3):e0122482 - PubMed
  93. Mol Pharm. 2013 Dec 2;10(12):4462-71 - PubMed

Publication Types

Grant support