Display options
Share it on

FEBS Open Bio. 2016 Mar 03;6(4):303-16. doi: 10.1002/2211-5463.12038. eCollection 2016 Apr.

Adaptive response to l-serine deficiency is mediated by p38 MAPK activation via 1-deoxysphinganine in normal fibroblasts.

FEBS open bio

Tomoko Sayano, Yuki Kawano, Wataru Kusada, Yashiho Arimoto, Kayoko Esaki, Momoko Hamano, Miyako Udono, Yoshinori Katakura, Takuya Ogawa, Hisanori Kato, Yoshio Hirabayashi, Shigeki Furuya

Affiliations

  1. Laboratory of Functional Genomics and Metabolism Department of Innovative Science and Technology for Bio-industry Graduate School of Bioresource and Bioenvironmental Sciences Kyushu University Fukuoka Japan; Laboratory for Molecular Membrane Neuroscience RIKEN Brain Science Institute Wako Saitama Japan.
  2. Department of Bioscience and Biotechnology Graduate School of Bioresource and Bioenvironmental Sciences Kyushu University Fukuoka Japan.
  3. Department of Genetic Resources Technology Graduate School of Bioresource and Bioenvironmental Sciences Kyushu University Fukuoka Japan.
  4. Department of Pharmaceutical Sciences International University of Health and Welfare Tochigi Japan.
  5. Corporate Sponsored Research Program 'Food for Life', Organization for Interdisciplinary Research Projects The University of Tokyo Japan.
  6. Laboratory for Molecular Membrane Neuroscience RIKEN Brain Science Institute Wako Saitama Japan.
  7. Laboratory of Functional Genomics and Metabolism Department of Innovative Science and Technology for Bio-industry Graduate School of Bioresource and Bioenvironmental Sciences Kyushu University Fukuoka Japan; Department of Bioscience and Biotechnology Graduate School of Bioresource and Bioenvironmental Sciences Kyushu University Fukuoka Japan; Department of Genetic Resources Technology Graduate School of Bioresource and Bioenvironmental Sciences Kyushu University Fukuoka Japan.

PMID: 27239443 PMCID: PMC4821351 DOI: 10.1002/2211-5463.12038

Abstract

UNLABELLED: Reduced availability of l-serine limits cell proliferation and leads to an adaptation to l-serine-deficient environment, the underlying molecular mechanism of which remain largely unexplored. Genetic ablation of 3-phosphoglycerate dehydrogenase (Phgdh), which catalyzes the first step of de novo l-serine synthesis, led to diminished cell proliferation and the activation of p38 MAPK and stress-activated protein kinase/Jun amino-terminal kinase in mouse embryonic fibroblasts under l-serine depletion. The resultant l-serine deficiency induced cyclin-dependent kinase inhibitor 1a (Cdkn1a; p21) expression, which was mediated by p38 MAPK. Survival of the Phgdh-deficient mouse embryonic fibroblasts was markedly reduced by p38 MAPK inhibition under l-serine depletion, whereas p38 MAPK could be activated by 1-deoxysphinganine, an atypical alanine-derived sphingoid base that was found to accumulate in l-serine-depleted mouse embryonic fibroblasts. These observations provide persuasive evidence that when the external l-serine supply is limited, l-serine synthesized de novo in proliferating cells serves as a metabolic gatekeeper to maintain cell survival and the functions necessary for executing cell cycle progression.

DATABASE: Gene Expression Omnibus, accession number GSE55687.

Keywords: cell proliferation; nutritional stress; p21; p38 MAPK; serine deficiency

References

  1. Mol Cell. 2005 Apr 29;18(3):283-93 - PubMed
  2. J Inherit Metab Dis. 2013 Jul;36(4):613-9 - PubMed
  3. Trends Cell Biol. 2000 Feb;10(2):73-80 - PubMed
  4. Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):194-9 - PubMed
  5. Nature. 2011 Aug 18;476(7360):346-50 - PubMed
  6. Am J Hum Genet. 2014 Sep 4;95(3):285-93 - PubMed
  7. Mol Genet Metab. 2010 Mar;99(3):256-62 - PubMed
  8. Am J Hum Genet. 2014 Jun 5;94(6):898-904 - PubMed
  9. Gene Ther. 2000 Jun;7(12):1063-6 - PubMed
  10. J Biol Chem. 2004 Jan 30;279(5):3573-7 - PubMed
  11. FEBS J. 2013 Mar;280(6):1502-17 - PubMed
  12. Genes Dev. 1998 Nov 15;12(22):3499-511 - PubMed
  13. J Biol Chem. 2003 Jul 11;278(28):25853-8 - PubMed
  14. Nature. 2013 Jan 24;493(7433):542-6 - PubMed
  15. Proteomics. 2009 Dec;9(24):5525-33 - PubMed
  16. FEBS J. 2009 Feb;276(3):707-18 - PubMed
  17. Science. 1959 Jan 30;129(3344):252-4 - PubMed
  18. Genes Dev. 1997 Apr 15;11(8):957-72 - PubMed
  19. J Biol Chem. 2010 Jul 23;285(30):22846-52 - PubMed
  20. Nat Genet. 2011 Jul 31;43(9):869-74 - PubMed
  21. Proc Natl Acad Sci U S A. 2012 May 1;109(18):6904-9 - PubMed
  22. J Biol Chem. 2004 Jan 30;279(5):3327-39 - PubMed
  23. Funct Integr Genomics. 2008 Aug;8(3):235-49 - PubMed
  24. Eur J Pharmacol. 2008 Apr 28;584(2-3):237-45 - PubMed
  25. Apoptosis. 2007 Feb;12(2):395-409 - PubMed
  26. Cell. 1995 Aug 25;82(4):675-84 - PubMed
  27. FEBS Lett. 2000 May 26;474(1):63-5 - PubMed
  28. Cancer Lett. 2000 Apr 28;152(1):23-9 - PubMed
  29. Methods. 2012 Mar;56(3):383-8 - PubMed
  30. Cell Metab. 2005 Jan;1(1):15-25 - PubMed
  31. J Biol Chem. 2015 Jun 5;290(23):14595-609 - PubMed
  32. J Neurooncol. 2013 Feb;111(3):245-55 - PubMed
  33. J Biol Chem. 2010 Apr 9;285(15):11178-87 - PubMed
  34. EMBO J. 1996 Dec 16;15(24):7060-9 - PubMed

Publication Types