Display options
Share it on

PLoS One. 2016 May 12;11(5):e0155530. doi: 10.1371/journal.pone.0155530. eCollection 2016.

Generating Gene Ontology-Disease Inferences to Explore Mechanisms of Human Disease at the Comparative Toxicogenomics Database.

PloS one

Allan Peter Davis, Thomas C Wiegers, Benjamin L King, Jolene Wiegers, Cynthia J Grondin, Daniela Sciaky, Robin J Johnson, Carolyn J Mattingly

Affiliations

  1. Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America.
  2. Department of Bioinformatics, Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, United States of America.
  3. Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, United States of America.

PMID: 27171405 PMCID: PMC4865041 DOI: 10.1371/journal.pone.0155530

Abstract

Strategies for discovering common molecular events among disparate diseases hold promise for improving understanding of disease etiology and expanding treatment options. One technique is to leverage curated datasets found in the public domain. The Comparative Toxicogenomics Database (CTD; http://ctdbase.org/) manually curates chemical-gene, chemical-disease, and gene-disease interactions from the scientific literature. The use of official gene symbols in CTD interactions enables this information to be combined with the Gene Ontology (GO) file from NCBI Gene. By integrating these GO-gene annotations with CTD's gene-disease dataset, we produce 753,000 inferences between 15,700 GO terms and 4,200 diseases, providing opportunities to explore presumptive molecular underpinnings of diseases and identify biological similarities. Through a variety of applications, we demonstrate the utility of this novel resource. As a proof-of-concept, we first analyze known repositioned drugs (e.g., raloxifene and sildenafil) and see that their target diseases have a greater degree of similarity when comparing GO terms vs. genes. Next, a computational analysis predicts seemingly non-intuitive diseases (e.g., stomach ulcers and atherosclerosis) as being similar to bipolar disorder, and these are validated in the literature as reported co-diseases. Additionally, we leverage other CTD content to develop testable hypotheses about thalidomide-gene networks to treat seemingly disparate diseases. Finally, we illustrate how CTD tools can rank a series of drugs as potential candidates for repositioning against B-cell chronic lymphocytic leukemia and predict cisplatin and the small molecule inhibitor JQ1 as lead compounds. The CTD dataset is freely available for users to navigate pathologies within the context of extensive biological processes, molecular functions, and cellular components conferred by GO. This inference set should aid researchers, bioinformaticists, and pharmaceutical drug makers in finding commonalities in disease mechanisms, which in turn could help identify new therapeutics, new indications for existing pharmaceuticals, potential disease comorbidities, and alerts for side effects.

References

  1. N Engl J Med. 1999 Nov 18;341(21):1565-71 - PubMed
  2. Nat Genet. 2000 May;25(1):25-9 - PubMed
  3. Dermatol Online J. 2003 Aug;9(3):5 - PubMed
  4. Nat Rev Drug Discov. 2005 Dec;4(12):1005-14 - PubMed
  5. Science. 2006 Sep 29;313(5795):1929-35 - PubMed
  6. PLoS Comput Biol. 2006 Oct 27;2(10):e125 - PubMed
  7. Drugs. 2008;68(14):2059-83 - PubMed
  8. Nucleic Acids Res. 2009 Jan;37(Database issue):D786-92 - PubMed
  9. BMC Med Genomics. 2008 Oct 09;1:48 - PubMed
  10. Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14621-6 - PubMed
  11. Nucleic Acids Res. 2011 Jan;39(Database issue):D1067-72 - PubMed
  12. Database (Oxford). 2011 Sep 20;2011:bar034 - PubMed
  13. Bioinformation. 2011;7(4):154-6 - PubMed
  14. Acta Psychiatr Scand. 2012 Sep;126(3):186-97 - PubMed
  15. Database (Oxford). 2012 Mar 20;2012:bar059 - PubMed
  16. Database (Oxford). 2012 Mar 20;2012:bar065 - PubMed
  17. Lancet. 2012 May 12;379(9828):1825-34 - PubMed
  18. Iran J Pediatr. 2010 Mar;20(1):127-30 - PubMed
  19. Nucleic Acids Res. 2013 Jan;41(Database issue):D1104-14 - PubMed
  20. PLoS One. 2012;7(11):e46524 - PubMed
  21. Expert Opin Pharmacother. 2013 May;14(7):949-56 - PubMed
  22. PLoS One. 2013 Apr 04;8(4):e60618 - PubMed
  23. J Cheminform. 2013 Jun 22;5(1):30 - PubMed
  24. Bull Med Libr Assoc. 1990 Jan;78(1):29-37 - PubMed
  25. Database (Oxford). 2013 Nov 28;2013:bat080 - PubMed
  26. Diabetes. 2014 Jul;63(7):2253-61 - PubMed
  27. Semin Neurol. 2014 Jul;34(3):321-40 - PubMed
  28. Nucleic Acids Res. 2015 Jan;43(Database issue):D914-20 - PubMed
  29. Nucleic Acids Res. 2015 Jan;43(Database issue):D36-42 - PubMed
  30. World J Diabetes. 2014 Dec 15;5(6):889-93 - PubMed
  31. Nat Chem Biol. 2015 Jan;11(1):9-15 - PubMed
  32. J Affect Disord. 2015 Mar 15;174:250-6 - PubMed
  33. Bioinformatics. 2015 Jun 1;31(11):1788-95 - PubMed
  34. J Clin Med Res. 2015 Apr;7(4):257-61 - PubMed
  35. Oncotarget. 2015 Mar 30;6(9):6915-30 - PubMed
  36. Oxid Med Cell Longev. 2015;2015:985845 - PubMed
  37. Medicine (Baltimore). 2015 Jul;94(29):e1203 - PubMed
  38. Neurol Sci. 2015 Oct;36(10):1763-9 - PubMed
  39. Circulation. 2015 Sep 8;132(10):965-86 - PubMed
  40. Epilepsy Behav. 2015 Nov;52(Pt A):267-74 - PubMed
  41. Clin Pharmacol Ther. 2016 Mar;99(3):285-97 - PubMed
  42. Environ Health Perspect. 2016 Oct;124(10):1592-1599 - PubMed
  43. Int J Dermatol. 1980 Jul-Aug;19(6):318-22 - PubMed
  44. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):4082-5 - PubMed
  45. Int J Impot Res. 1996 Jun;8(2):47-52 - PubMed

MeSH terms

Publication Types

Grant support