Display options
Share it on

Neurol Genet. 2016 May 24;2(3):e75. doi: 10.1212/NXG.0000000000000075. eCollection 2016 Jun.

Next-generation profiling to identify the molecular etiology of Parkinson dementia.

Neurology. Genetics

Adrienne Henderson-Smith, Jason J Corneveaux, Matthew De Both, Lori Cuyugan, Winnie S Liang, Matthew Huentelman, Charles Adler, Erika Driver-Dunckley, Thomas G Beach, Travis L Dunckley

Affiliations

  1. Neurogenomics Division (A.H.-S., J.J.C., M.D.B., L.C., W.S.L., M.H., T.L.D.), Collaborative Sequencing Center (L.C., W.S.L.), Translational Genomics Research Institute, Phoenix; Division of Neurology (C.A., E.D.-D.), Mayo Clinic, Scottsdale; Banner Sun Health Research Institute (T.G.B.), Sun City, AZ.

PMID: 27275011 PMCID: PMC4881621 DOI: 10.1212/NXG.0000000000000075

Abstract

OBJECTIVE: We sought to determine the underlying cortical gene expression changes associated with Parkinson dementia using a next-generation RNA sequencing approach.

METHODS: In this study, we used RNA sequencing to evaluate differential gene expression and alternative splicing in the posterior cingulate cortex from neurologically normal control patients, patients with Parkinson disease, and patients with Parkinson disease with dementia.

RESULTS: Genes overexpressed in both disease states were involved with an immune response, whereas shared underexpressed genes functioned in signal transduction or as components of the cytoskeleton. Alternative splicing analysis produced a pattern of immune and RNA-processing disturbances.

CONCLUSIONS: Genes with the greatest degree of differential expression did not overlap with genes exhibiting significant alternative splicing activity. Such variation indicates the importance of broadening expression studies to include exon-level changes because there can be significant differential splicing activity with potential structural consequences, a subtlety that is not detected when examining differential gene expression alone, or is underrepresented with probe-limited array technology.

References

  1. Biochim Biophys Acta. 1999 Jan 18;1444(1):138-42 - PubMed
  2. Neurology. 2005 Jun 28;64(12):2069-73 - PubMed
  3. Peptides. 2008 Jan;29(1):83-92 - PubMed
  4. Bioinformatics. 2010 Nov 15;26(22):2927-8 - PubMed
  5. Clin Chim Acta. 2015 Sep 20;449:68-76 - PubMed
  6. J Biol Chem. 2006 Mar 31;281(13):8970-80 - PubMed
  7. J Anat. 2010 Dec;217(6):683-93 - PubMed
  8. Mol Cell Biol. 2009 Mar;29(5):1375-87 - PubMed
  9. Cell Signal. 2008 Feb;20(2):347-58 - PubMed
  10. J Immunol. 2010 Nov 1;185(9):5032-9 - PubMed
  11. Genome Biol. 2010;11(10):R106 - PubMed
  12. Mov Disord. 2008 Aug 15;23(11):1588-95 - PubMed
  13. Exp Gerontol. 2010 Jan;45(1):70-4 - PubMed
  14. Mol Cell Biol. 2010 Aug;30(16):3929-42 - PubMed
  15. J Chem Neuroanat. 2011 Dec;42(4):249-61 - PubMed
  16. J Invest Dermatol. 2011 Aug;131(8):1684-91 - PubMed
  17. Am J Hum Genet. 2006 Mar;78(3):510-9 - PubMed
  18. Acta Neuropathol. 2009 Jun;117(6):613-34 - PubMed
  19. Neuropathology. 2015 Aug;35(4):354-89 - PubMed
  20. J Neurosci Res. 2007 Mar;85(4):798-804 - PubMed
  21. Nat Rev Immunol. 2014 Jul;14 (7):463-77 - PubMed
  22. Brain Res. 2012 Jul 23;1466:152-7 - PubMed
  23. Cell. 2000 Nov 10;103(4):621-32 - PubMed
  24. Cell Cycle. 2005 Dec;4(12):1753-7 - PubMed
  25. Nat Rev Neurol. 2012 Sep;8(9):518-30 - PubMed
  26. J Neurol Sci. 2005 Feb 15;228(2):129-35 - PubMed
  27. Cytokine. 2008 Jun;42(3):277-88 - PubMed
  28. Biochim Biophys Acta. 2003 Oct 1;1629(1-3):15-25 - PubMed
  29. Bioinformatics. 2012 Sep 15;28(18):2385-7 - PubMed
  30. Proc Natl Acad Sci U S A. 2003 Mar 18;100(6):3269-74 - PubMed
  31. J Interferon Cytokine Res. 2009 Jun;29(6):339-43 - PubMed
  32. Neuropsychopharmacology. 2009 Jan;34(1):18-54 - PubMed
  33. Neurobiol Dis. 2010 May;38(2):210-8 - PubMed
  34. Nat Genet. 2000 May;25(1):25-9 - PubMed
  35. Blood. 2010 Nov 25;116(22):4646-56 - PubMed
  36. Nat Commun. 2014 Sep 05;5:4820 - PubMed
  37. Exp Cell Res. 2003 Jun 10;286(2):233-40 - PubMed

Publication Types