Display options
Share it on

J Appl Crystallogr. 2016 May 23;49:968-975. doi: 10.1107/S1600576716006348. eCollection 2016 Jun 01.

Room-temperature macromolecular crystallography using a micro-patterned silicon chip with minimal background scattering.

Journal of applied crystallography

Philip Roedig, Ramona Duman, Juan Sanchez-Weatherby, Ismo Vartiainen, Anja Burkhardt, Martin Warmer, Christian David, Armin Wagner, Alke Meents

Affiliations

  1. Deutsches Elektronen-Synchrotron DESY, Photon Science, Notkestrasse 85, Hamburg 22607, Germany.
  2. Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK.
  3. Paul Scherrer Institut, Villigen PSI, 5232, Switzerland.

PMID: 27275143 PMCID: PMC4886986 DOI: 10.1107/S1600576716006348

Abstract

Recent success at X-ray free-electron lasers has led to serial crystallography experiments staging a comeback at synchrotron sources as well. With crystal lifetimes typically in the millisecond range and the latest-generation detector technologies with high framing rates up to 1 kHz, fast sample exchange has become the bottleneck for such experiments. A micro-patterned chip has been developed from single-crystalline silicon, which acts as a sample holder for up to several thousand microcrystals at a very low background level. The crystals can be easily loaded onto the chip and excess mother liquor can be efficiently removed. Dehydration of the crystals is prevented by keeping them in a stream of humidified air during data collection. Further sealing of the sample holder, for example with Kapton, is not required. Room-temperature data collection from insulin crystals loaded onto the chip proves the applicability of the chip for macromolecular crystallography. Subsequent structure refinements reveal no radiation-damage-induced structural changes for insulin crystals up to a dose of 565.6 kGy, even though the total diffraction power of the crystals has on average decreased to 19.1% of its initial value for the same dose. A decay of the diffracting power by half is observed for a dose of

Keywords: X-ray radiation damage; crystallography on a chip; room-temperature crystallography; synchrotron serial crystallography

References

  1. Acta Crystallogr D Struct Biol. 2016 Jan;72 (Pt 1):2-11 - PubMed
  2. Acta Crystallogr D Biol Crystallogr. 2006 Jan;62(Pt 1):32-47 - PubMed
  3. IUCrJ. 2014 Feb 10;1(Pt 2):87-94 - PubMed
  4. Sci Rep. 2014 Aug 12;4:6026 - PubMed
  5. Acta Crystallogr D Biol Crystallogr. 2015 Oct;71(Pt 10):1987-97 - PubMed
  6. J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674 - PubMed
  7. Acta Crystallogr D Biol Crystallogr. 2011 Jun;67(Pt 6):533-9 - PubMed
  8. Biophys J. 1992 Mar;61(3):604-11 - PubMed
  9. Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):133-44 - PubMed
  10. Acta Crystallogr B. 1970 Jul 15;26(7):998-1004 - PubMed
  11. Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):E445-54 - PubMed
  12. Nature. 2011 May 5;473(7345):55-60 - PubMed
  13. J Synchrotron Radiat. 2006 Mar;13(Pt 2):120-30 - PubMed
  14. Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16247-52 - PubMed
  15. J Synchrotron Radiat. 2000 Sep 1;7(Pt 5):313-7 - PubMed
  16. Acta Crystallogr D Biol Crystallogr. 2000 Mar;56(Pt 3):328-41 - PubMed
  17. Acta Crystallogr D Biol Crystallogr. 2012 Mar;68(Pt 3):321-3 - PubMed
  18. Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):623-8 - PubMed
  19. Curr Opin Struct Biol. 2012 Oct;22(5):651-9 - PubMed
  20. Biochemistry. 1987 Jan 13;26(1):254-61 - PubMed
  21. Acta Crystallogr D Biol Crystallogr. 2014 Jan;70(Pt 1):101-9 - PubMed
  22. Acta Crystallogr D Biol Crystallogr. 2006 Sep;62(Pt 9):1030-8 - PubMed
  23. Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):4793-8 - PubMed
  24. Acta Crystallogr D Biol Crystallogr. 2012 May;68(Pt 5):592-600 - PubMed
  25. IUCrJ. 2014 May 30;1(Pt 4):204-12 - PubMed
  26. Biochemistry. 1992 Mar 10;31(9):2469-81 - PubMed
  27. J Synchrotron Radiat. 2015 Nov;22(6):1372-8 - PubMed
  28. Acta Crystallogr D Biol Crystallogr. 2003 May;59(Pt 5):903-9 - PubMed
  29. Structure. 2007 Dec;15(12):1531-41 - PubMed
  30. Sci Rep. 2015 May 29;5:10451 - PubMed
  31. Nature. 1979 Aug 16;280(5723):558-63 - PubMed
  32. Nature. 2009 Dec 3;462(7273):669-73 - PubMed
  33. Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21 - PubMed
  34. Acta Crystallogr D Biol Crystallogr. 2015 Jun;71(Pt 6):1238-56 - PubMed
  35. Acta Crystallogr D Biol Crystallogr. 2014 May;70(Pt 5):1248-56 - PubMed
  36. Acta Crystallogr D Biol Crystallogr. 2013 Feb;69(Pt 2):308-12 - PubMed
  37. Acta Crystallogr D Biol Crystallogr. 2015 Feb;71(Pt 2):387-97 - PubMed
  38. Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):4912-7 - PubMed
  39. Nat Commun. 2014;5:3309 - PubMed
  40. IUCrJ. 2014 Aug 25;1(Pt 5):349-60 - PubMed
  41. Proc Natl Acad Sci U S A. 2010 Jan 19;107(3):1094-9 - PubMed
  42. Nature. 1992 Jun 4;357(6377):423-4 - PubMed
  43. J Synchrotron Radiat. 2009 Mar;16(Pt 2):183-90 - PubMed
  44. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012 Apr 1;68(Pt 4):495-500 - PubMed
  45. Acta Crystallogr D Biol Crystallogr. 2005 Jul;61(Pt 7):881-90 - PubMed
  46. Nature. 2011 Feb 3;470(7332):73-7 - PubMed
  47. Science. 2013 Jan 11;339(6116):227-30 - PubMed
  48. Nature. 2014 Sep 11;513(7517):261-5 - PubMed
  49. J Mol Biol. 1976 Sep 25;106(3):889-93 - PubMed
  50. Structure. 2000 Mar 15;8(3):315-28 - PubMed
  51. Science. 2014 Dec 5;346(6214):1242-6 - PubMed
  52. Science. 2012 Jul 20;337(6092):362-4 - PubMed
  53. Acta Crystallogr D Biol Crystallogr. 2006 Jan;62(Pt 1):96-101 - PubMed
  54. Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32 - PubMed
  55. Acta Crystallogr B. 1988 Feb 1;44 ( Pt 1):22-6 - PubMed
  56. Acta Crystallogr D Biol Crystallogr. 2009 Dec;65(Pt 12):1237-46 - PubMed
  57. Radiat Res. 1966 Jun;28(2):203-14 - PubMed
  58. Struct Dyn. 2015 Aug 18;2(5):054302 - PubMed

Publication Types