Display options
Share it on

Med Phys. 2016 Jun;43(6):3143-3156. doi: 10.1118/1.4951732.

Vision 20/20: Molecular-guided surgical oncology based upon tumor metabolism or immunologic phenotype: Technological pathways for point of care imaging and intervention.

Medical physics

Brian W Pogue, Keith D Paulsen, Kimberley S Samkoe, Jonathan T Elliott, Tayyaba Hasan, Theresa V Strong, Daniel R Draney, Joachim Feldwisch

Affiliations

  1. Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 and Department of Surgery, Dartmouth College, Hanover, New Hampshire 03755.
  2. Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755; Department of Surgery, Dartmouth College, Hanover, New Hampshire 03755; and Department of Diagnostic Radiology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire 03755.
  3. Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755.
  4. Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 and Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
  5. Vector Production Facility, Division of Hematology Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294.
  6. LI-COR Biosciences, Lincoln, Nebraska 68504.
  7. Affibody AB, Solina SE 171 69, Sweden.

PMID: 27277060 PMCID: PMC4902810 DOI: 10.1118/1.4951732

Abstract

Surgical guidance with fluorescence has been demonstrated in individual clinical trials for decades, but the scientific and commercial conditions exist today for a dramatic increase in clinical value. In the past decade, increased use of indocyanine green based visualization of vascular flow, biliary function, and tissue perfusion has spawned a robust growth in commercial systems that have near-infrared emission imaging and video display capabilities. This recent history combined with major preclinical innovations in fluorescent-labeled molecular probes, has the potential for a shift in surgical practice toward resection guidance based upon molecular information in addition to conventional visual and palpable cues. Most surgical subspecialties already have treatment management decisions partially based upon the immunohistochemical phenotype of the cancer, as assessed from molecular pathology of the biopsy tissue. This phenotyping can inform the surgical resection process by spatial mapping of these features. Further integration of the diagnostic and therapeutic value of tumor metabolism sensing molecules or immune binding agents directly into the surgical process can help this field mature. Maximal value to the patient would come from identifying the spatial patterns of molecular expression in vivo that are well known to exist. However, as each molecular agent is advanced into trials, the performance of the imaging system can have a critical impact on the success. For example, use of pre-existing commercial imaging systems are not well suited to image receptor targeted fluorophores because of the lower concentrations expected, requiring orders of magnitude more sensitivity. Additionally the imaging system needs the appropriate dynamic range and image processing features to view molecular probes or therapeutics that may have nonspecific uptake or pharmacokinetic issues which lead to limitations in contrast. Imaging systems need to be chosen based upon objective performance criteria, and issues around calibration, validation, and interpretation need to be established before a clinical trial starts. Finally, as early phase trials become more established, the costs associated with failures can be crippling to the field, and so judicious use of phase 0 trials with microdose levels of agents is one viable paradigm to help the field advance, but this places high sensitivity requirements on the imaging systems used. Molecular-guided surgery has truly transformative potential, and several key challenges are outlined here with the goal of seeing efficient advancement with ideal choices. The focus of this vision 20/20 paper is on the technological aspects that are needed to be paired with these agents.

References

  1. Acta Neurochir (Wien). 2013 Jul;155(7):1277-86 - PubMed
  2. Bioconjug Chem. 2011 Aug 17;22(8):1700-5 - PubMed
  3. Neurosurgery. 1998 Mar;42(3):518-25; discussion 525-6 - PubMed
  4. Proc SPIE Int Soc Opt Eng. 2015 Mar 4;9311:null - PubMed
  5. BJU Int. 1999 Jan;83(1):129-35 - PubMed
  6. J Neurooncol. 2014 Sep;119(3):451-63 - PubMed
  7. J Biomed Opt. 2013 Oct;18(10):101304 - PubMed
  8. Lasers Surg Med. 2000;26(1):76-82 - PubMed
  9. Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4311-6 - PubMed
  10. Semin Nucl Med. 2010 May;40(3):167-81 - PubMed
  11. Surg Endosc. 2015 Jul;29(7):2046-55 - PubMed
  12. Neurosurgery. 2014 Jul;75(1):61-71 - PubMed
  13. Ann Surg Oncol. 2016 Feb;23 Suppl 2:S266-74 - PubMed
  14. Br J Ophthalmol. 1991 Jul;75(7):398-400 - PubMed
  15. Theranostics. 2014 Aug 15;4(11):1072-84 - PubMed
  16. J Surg Res. 2014 May 1;188(1):119-28 - PubMed
  17. J Biomed Opt. 2013 Oct;18(10):101302 - PubMed
  18. Semin Urol Oncol. 2000 Nov;18(4):264-72 - PubMed
  19. Mol Imaging. 2005 Jul-Sep;4(3):194-204 - PubMed
  20. Lasers Surg Med. 2007 Aug;39(7):605-13 - PubMed
  21. J Biophotonics. 2016 Mar;9(3):282-95 - PubMed
  22. J Urol. 2003 Jul;170(1):226-9 - PubMed
  23. Opt Lett. 2013 Sep 1;38(17):3249-52 - PubMed
  24. J Urol. 2009 Feb;181(2):783-9; discussion 789-90 - PubMed
  25. Cancer Res. 2007 Mar 1;67(5):2178-86 - PubMed
  26. Int J Cancer. 1994 Jan 2;56(1):106-12 - PubMed
  27. Lancet Oncol. 2006 May;7(5):392-401 - PubMed
  28. J Biomed Opt. 2013 Oct;18(10):101314 - PubMed
  29. J Endourol. 1999 Dec;13(10):755-9 - PubMed
  30. World J Surg. 2013 Dec;37(12):2800-11 - PubMed
  31. Curr Opin Gastroenterol. 2005 Jan;21(1):70-9 - PubMed
  32. J Biotechnol. 2013 Dec;168(4):388-93 - PubMed
  33. Invest Radiol. 2006 Mar;41(3):206-12 - PubMed
  34. Ann Surg Oncol. 2012 Oct;19(11):3534-9 - PubMed
  35. Breast Cancer Res Treat. 2013 Jul;140(2):263-72 - PubMed
  36. World J Surg. 2015 May;39(5):1069-79 - PubMed
  37. Photochem Photobiol. 1987 Nov;46(5):759-63 - PubMed
  38. Q J Nucl Med Mol Imaging. 2007 Jun;51(2):96-8 - PubMed
  39. J Urol. 2015 Aug;194(2):371-7 - PubMed
  40. Neurosurgery. 2011 Mar;68(1 Suppl Operative):241-5; discussion 245 - PubMed
  41. Sci Rep. 2015 Aug 17;5:13087 - PubMed
  42. Chem Commun (Camb). 2014 Jul 18;50(56):7507-10 - PubMed
  43. Surg Innov. 2015 Feb;22(1):20-5 - PubMed
  44. J Neurosurg. 2015 May;122(5):1185-92 - PubMed
  45. Rev Sci Instrum. 2008 Aug;79(8):086112 - PubMed
  46. Eye (Lond). 2009 Mar;23(3):504-18 - PubMed
  47. Appl Opt. 1994 Dec 1;33(34):8022-9 - PubMed
  48. Cancer Sci. 2014 Dec;105(12):1626-30 - PubMed
  49. J Surg Res. 2012 Jul;176(1):7-13 - PubMed
  50. Urol Clin North Am. 2009 May;36(2):237-49, ix - PubMed
  51. Curr Opin Chem Biol. 2003 Oct;7(5):626-34 - PubMed
  52. Cancer J. 2015 May-Jun;21(3):194-205 - PubMed
  53. Radiology. 2015 May;275(2):521-9 - PubMed
  54. PLoS One. 2014 Dec 09;9(12):e114885 - PubMed
  55. Phys Med Biol. 2015 Jul 21;60(14 ):R239-69 - PubMed
  56. Radiother Oncol. 2015 Mar;114(3):345-50 - PubMed
  57. Otolaryngol Head Neck Surg. 2013 Jun;148(6):982-90 - PubMed
  58. Ann Surg Oncol. 2010 Jul;17(7):1787-93 - PubMed
  59. J Pathol Inform. 2011;2:32 - PubMed
  60. Neurosurgery. 2012 Mar;70(1 Suppl Operative):65-73; discussion 73-4 - PubMed
  61. Int J Oncol. 2010 Apr;36(4):777-84 - PubMed
  62. J Control Release. 2014 Jul 28;186:1-10 - PubMed
  63. J Med Chem. 2009 Jan 22;52(2):358-68 - PubMed
  64. ACS Med Chem Lett. 2014 Jan 17;5(4):411-5 - PubMed
  65. J Urol. 2013 Nov;190(5):1668-73 - PubMed
  66. Photochem Photobiol Sci. 2008 Jul;7(7):775-81 - PubMed
  67. J Biomed Opt. 2015 Aug;20(8):80504 - PubMed
  68. J Neurosurg. 2011 Mar;114(3):595-603 - PubMed
  69. Int J Clin Exp Med. 2015 Aug 15;8(8):12898-905 - PubMed
  70. Radiology. 2015 Jul;276(1):191-8 - PubMed
  71. J Card Surg. 2012 Mar;27(2):158-62 - PubMed
  72. Mol Imaging Biol. 2015 Jun;17(3):413-23 - PubMed
  73. Jpn J Clin Oncol. 2004 May;34(5):227-37 - PubMed
  74. J Biomed Opt. 2010 May-Jun;15(3):030513 - PubMed
  75. Gastrointest Endosc. 1990 Mar-Apr;36(2):105-11 - PubMed
  76. Chemistry. 2015 Apr 13;21(16):6070-3 - PubMed
  77. World Neurosurg. 2014 Jul-Aug;82(1-2):175-85 - PubMed
  78. Cancer. 2011 Nov 1;117(21):4812-22 - PubMed
  79. Urol Clin North Am. 2014 Nov;41(4):567-80 - PubMed
  80. Sci Rep. 2015 Jun 05;5:11044 - PubMed
  81. J Biomed Opt. 2010 Mar-Apr;15(2):026028 - PubMed
  82. Biotechnol J. 2007 Apr;2(4):422-5 - PubMed
  83. Technol Cancer Res Treat. 2015 Apr;14(2):213-20 - PubMed
  84. J Neurosurg. 2011 Jul;115(1):11-7 - PubMed
  85. Appl Opt. 2007 Apr 1;46(10):1669-78 - PubMed
  86. Front Biosci. 2007 May 01;12:4709-21 - PubMed
  87. Nat Med. 2009 Jan;15(1):104-9 - PubMed
  88. Int J Biol Sci. 2013;9(3):303-12 - PubMed
  89. J Neurosurg. 2015 Sep;123(3):771-80 - PubMed
  90. Bioorg Med Chem. 2009 Jul 15;17(14):5176-81 - PubMed
  91. Technol Cancer Res Treat. 2003 Dec;2(6):505-14 - PubMed
  92. J Biol Photogr Assoc. 1970 Apr;38(2):70-4 - PubMed
  93. Mol Imaging Biol. 2012 Oct;14(5):584-92 - PubMed
  94. Technol Cancer Res Treat. 2003 Dec;2(6):553-62 - PubMed
  95. Nat Rev Cancer. 2013 Sep;13(9):653-62 - PubMed
  96. Chem Biol. 2015 Jan 22;22(1):148-58 - PubMed
  97. J Am Assoc Gynecol Laparosc. 1998 May;5(2):141-8 - PubMed
  98. Eur Spine J. 2007 Aug;16(8):1293-302 - PubMed
  99. Biomed Opt Express. 2015 Sep 03;6(10):3765-82 - PubMed
  100. Int J Colorectal Dis. 1999 Feb;14(1):63-8 - PubMed
  101. J Endourol. 2014 May;28(5):509-12 - PubMed
  102. J Nucl Med. 2007 Feb;48(2):169 - PubMed
  103. Gastrointest Endosc. 2012 Apr;75(4):877-87 - PubMed
  104. J Hepatobiliary Pancreat Sci. 2012 Nov;19(6):626-37 - PubMed
  105. Gastroenterology. 2011 Jun;140(7):1863-7 - PubMed
  106. J Laparoendosc Adv Surg Tech A. 2014 Apr;24(4):241-7 - PubMed
  107. Cancer Res. 2014 Dec 15;74(24):7465-74 - PubMed
  108. Med Phys. 2014 Feb;41(2):022105 - PubMed
  109. Neurosurgery. 2014 Mar;74(3):310-9; discussion 319-20 - PubMed
  110. Urology. 2014 Oct;84(4):751-9 - PubMed
  111. Int J Cancer. 2015 Mar 1;136(5):1095-103 - PubMed
  112. ScientificWorldJournal. 2007 Dec 21;7:2046-71 - PubMed
  113. J Photochem Photobiol B. 1992 Jul 30;14 (4):275-92 - PubMed
  114. Cancer Biol Ther. 2005 May;4(5):561-70 - PubMed
  115. J Clin Neurosci. 2010 Jan;17(1):118-21 - PubMed
  116. J R Soc Med. 1980 May;73(5):362-5 - PubMed
  117. J Photochem Photobiol B. 2001 Apr;60(1):44-9 - PubMed
  118. Eur Urol. 2014 May;65(5):965-6 - PubMed
  119. Surg Endosc. 2014 May;28(5):1695-702 - PubMed
  120. Br J Surg. 2015 Jan;102(2):e56-72 - PubMed
  121. BJU Int. 2006 May;97(5):992-6 - PubMed
  122. J Clin Invest. 2007 Jul;117(7):1876-83 - PubMed
  123. Opt Express. 2008 Jun 9;16(12 ):8581-93 - PubMed
  124. Cancer Res. 2007 Apr 15;67(8):3809-17 - PubMed
  125. Gynecol Oncol. 2007 Oct;107(1 Suppl 1):S138-46 - PubMed
  126. Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4317-22 - PubMed
  127. Nat Med. 2011 Sep 18;17(10):1315-9 - PubMed
  128. Open Surg Oncol J. 2010;2(2):12-25 - PubMed
  129. Am J Obstet Gynecol. 2000 Jul;183(1):52-7 - PubMed
  130. Proc Natl Acad Sci U S A. 2014 Mar 11;111(10):E933-42 - PubMed
  131. J Biomed Nanotechnol. 2012 Oct;8(5):730-41 - PubMed
  132. Mol Biosyst. 2010 Nov;6(11):2325-31 - PubMed
  133. J Clin Neurosci. 2012 Dec;19(12):1719-22 - PubMed
  134. Surg Today. 2015 Dec;45(12):1467-74 - PubMed

Publication Types

Grant support