Display options
Share it on

Front Behav Neurosci. 2016 May 18;10:91. doi: 10.3389/fnbeh.2016.00091. eCollection 2016.

Distinct Types of Feeding Related Neurons in Mouse Hypothalamus.

Frontiers in behavioral neuroscience

Yan Tang, Diego Benusiglio, Valery Grinevich, Longnian Lin

Affiliations

  1. Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Science and the Collaborative Innovation Center for Brain Science, Institute of Brain Functional Genomics, East China Normal UniversityShanghai, China; Schaller Research Group on Neuropeptides at German Cancer Research Center, Central Institute of Mental Health, and Cell Networks Cluster of Excellence at the University of HeidelbergHeidelberg, Germany.
  2. Schaller Research Group on Neuropeptides at German Cancer Research Center, Central Institute of Mental Health, and Cell Networks Cluster of Excellence at the University of Heidelberg Heidelberg, Germany.
  3. Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Science and the Collaborative Innovation Center for Brain Science, Institute of Brain Functional Genomics, East China Normal University Shanghai, China.

PMID: 27242460 PMCID: PMC4870269 DOI: 10.3389/fnbeh.2016.00091

Abstract

The last two decades of research provided evidence for a substantial heterogeneity among feeding-related neurons (FRNs) in the hypothalamus. However, it remains unclear how FRNs differ in their firing patterns during food intake. Here, we investigated the relationship between the activity of neurons in mouse hypothalamus and their feeding behavior. Using tetrode-based in vivo recording technique, we identified various firing patterns of hypothalamic FRNs, which, after the initiation of food intake, can be sorted into four types: sharp increase (type I), slow increase (type II), sharp decrease (type III), and sustained decrease (type IV) of firing rates. The feeding-related firing response of FRNs was rigidly related to the duration of food intake and, to a less extent, associated with the type of food. The majority of these FRNs responded to glucose and leptin and exhibited electrophysiological characteristics of putative GABAergic neurons. In conclusion, our study demonstrated the diversity of neurons in the complex hypothalamic network coordinating food intake.

Keywords: feeding behavior; feeding-related neurons; firing patterns; food intake; hypothalamus; in vivo recording

References

  1. J Neurosci. 2013 May 1;33(18):7618-26 - PubMed
  2. J Neurophysiol. 1987 Nov;58(5):1123-48 - PubMed
  3. Yale J Biol Med. 1951 Nov;24(2):123-40 - PubMed
  4. Neuron. 1999 Aug;23 (4):775-86 - PubMed
  5. Stress. 2005 Dec;8(4):259-64 - PubMed
  6. Neuron. 2003 Jun 5;38(5):701-13 - PubMed
  7. J Neurosci. 2011 Oct 5;31(40):14235-42 - PubMed
  8. Brain Res. 1989 Mar 6;481(2):286-97 - PubMed
  9. Annu Rev Neurosci. 1995;18:555-86 - PubMed
  10. Eur J Neurosci. 2004 Dec;20(11):3054-62 - PubMed
  11. Nature. 1974 Feb 1;247(5439):284-6 - PubMed
  12. Neuropharmacology. 1990 Oct;29(10):957-60 - PubMed
  13. Brain Res. 1983 Oct;287(2):139-71 - PubMed
  14. Neuron. 2004 May 27;42(4):635-52 - PubMed
  15. Endocrinology. 1997 Jan;138(1):351-5 - PubMed
  16. J Neurosci. 2014 Aug 20;34(34):11405-15 - PubMed
  17. Cell. 1998 Feb 20;92(4):573-85 - PubMed
  18. Neuroscience. 2003;119(4):1033-44 - PubMed
  19. J Comp Neurol. 2003 Oct 27;465(4):593-603 - PubMed
  20. Physiol Behav. 1988;44(4-5):591-7 - PubMed
  21. Brain Res. 1999 Dec 4;849(1-2):248-52 - PubMed
  22. Brain Res. 2002 Oct 4;951(2):270-9 - PubMed
  23. Hippocampus. 1996;6(2):149-72 - PubMed
  24. Cell. 2015 Jan 29;160(3):516-27 - PubMed
  25. Cell Metab. 2010 Nov 3;12 (5):545-52 - PubMed
  26. Philos Trans R Soc Lond B Biol Sci. 2005 Dec 29;360(1464):2227-35 - PubMed
  27. Endocrinology. 2002 Aug;143(8):2995-3000 - PubMed
  28. J Neurosci. 2011 Oct 26;31(43):15455-67 - PubMed
  29. Brain Res. 1970 Jun 30;21(1):63-77 - PubMed
  30. J Neurophysiol. 2004 Jul;92(1):600-8 - PubMed
  31. Am J Physiol Regul Integr Comp Physiol. 2008 Feb;294(2):R329-43 - PubMed
  32. J Neurosci. 2015 Feb 25;35(8):3644-51 - PubMed
  33. Mol Cell Neurosci. 2014 Sep;62:30-41 - PubMed
  34. Neurosci Lett. 1981 Oct;26(1):79-83 - PubMed
  35. Proc Natl Acad Sci U S A. 2009 Feb 17;106(7):2418-22 - PubMed
  36. J Neurosci Methods. 2006 Jul 15;155(1):28-38 - PubMed
  37. Brain Res. 2000 May 19;865(1):35-44 - PubMed
  38. Proc Natl Acad Sci U S A. 2002 Mar 5;99(5):3240-5 - PubMed
  39. Peptides. 1999;20(9):1099-105 - PubMed
  40. J Physiol. 2013 Feb 15;591(4):933-53 - PubMed
  41. Neurosci Lett. 2001 Aug 31;309(3):165-8 - PubMed
  42. Eur J Neurosci. 2008 Aug;28(4):693-706 - PubMed
  43. J Neurosci. 2004 Nov 17;24(46):10493-501 - PubMed
  44. Neuron. 2006 Aug 17;51(4):483-94 - PubMed
  45. Physiol Behav. 1988;44(4-5):507-26 - PubMed
  46. Nat Neurosci. 2015 Apr;18(4):569-75 - PubMed
  47. Science. 1962 Feb 2;135(3501):374-5 - PubMed
  48. Cell Metab. 2011 Sep 7;14(3):313-23 - PubMed
  49. Neuron. 2005 Jun 2;46(5):787-98 - PubMed
  50. Am J Physiol Regul Integr Comp Physiol. 2006 Nov;291(5):R1265-74 - PubMed
  51. Nature. 1998 Dec 17;396(6712):670-4 - PubMed
  52. Science. 1978 Nov 3;202(4367):537-9 - PubMed
  53. Brain Res. 1989 Jul 3;491(1):15-32 - PubMed
  54. Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18736-41 - PubMed
  55. Eur J Neurosci. 2010 Aug;32(3):448-57 - PubMed
  56. Peptides. 1983 Jul-Aug;4(4):493-500 - PubMed
  57. J Physiol. 2012 Jul 1;590(13):3129-39 - PubMed
  58. Science. 1962 Feb 2;135(3501):375-7 - PubMed
  59. Exp Neurol. 1976 Jun;51(3):668-77 - PubMed
  60. J Neurophysiol. 2011 Oct;106(4):1713-21 - PubMed
  61. Int J Mol Med. 2005 Jun;15(6):1033-9 - PubMed

Publication Types