Display options
Share it on

Front Hum Neurosci. 2016 May 18;10:223. doi: 10.3389/fnhum.2016.00223. eCollection 2016.

Evaluation of an Adaptive Game that Uses EEG Measures Validated during the Design Process as Inputs to a Biocybernetic Loop.

Frontiers in human neuroscience

Kate C Ewing, Stephen H Fairclough, Kiel Gilleade

Affiliations

  1. School of Natural Sciences and Psychology, Liverpool John Moores University Liverpool, UK.

PMID: 27242486 PMCID: PMC4870503 DOI: 10.3389/fnhum.2016.00223

Abstract

Biocybernetic adaptation is a form of physiological computing whereby real-time data streaming from the brain and body is used by a negative control loop to adapt the user interface. This article describes the development of an adaptive game system that is designed to maximize player engagement by utilizing changes in real-time electroencephalography (EEG) to adjust the level of game demand. The research consists of four main stages: (1) the development of a conceptual framework upon which to model the interaction between person and system; (2) the validation of the psychophysiological inference underpinning the loop; (3) the construction of a working prototype; and (4) an evaluation of the adaptive game. Two studies are reported. The first demonstrates the sensitivity of EEG power in the (frontal) theta and (parietal) alpha bands to changing levels of game demand. These variables were then reformulated within the working biocybernetic control loop designed to maximize player engagement. The second study evaluated the performance of an adaptive game of Tetris with respect to system behavior and user experience. Important issues for the design and evaluation of closed-loop interfaces are discussed.

Keywords: EEG; adaptive interface; effort; engagement; gaming; physiological computing; psychophysiology

References

  1. Int J Psychophysiol. 1999 Jan;31(2):129-45 - PubMed
  2. Cognition. 2011 Mar;118(3):439-43 - PubMed
  3. Am Psychol. 1990 Jan;45(1):16-28 - PubMed
  4. Neuroimage. 2014 Jan 15;85 Pt 2:721-9 - PubMed
  5. Psychophysiology. 2009 May;46(3):451-7 - PubMed
  6. Biol Psychol. 1999 May;50(1):61-76 - PubMed
  7. Hum Brain Mapp. 2005 Oct;26(2):148-55 - PubMed
  8. Neuroimage. 2012 Jan 2;59(1):57-63 - PubMed
  9. Biol Psychol. 1995 May;40(1-2):187-95 - PubMed
  10. Hum Factors. 2006 Winter;48(4):693-709 - PubMed
  11. Psychophysiology. 2008 Sep;45(5):869-75 - PubMed
  12. Eur J Neurosci. 2002 Apr;15(8):1395-9 - PubMed
  13. Hum Factors. 1998 Mar;40(1):79-91 - PubMed
  14. Neuroimage. 2012 Jan 2;59(1):48-56 - PubMed
  15. Brain Res Cogn Brain Res. 2000 Mar;9(2):121-4 - PubMed
  16. Trends Cogn Sci. 2014 Aug;18(8):414-21 - PubMed
  17. Psychophysiology. 1993 Mar;30(2):152-60 - PubMed
  18. J Neural Eng. 2011 Apr;8(2):025005 - PubMed
  19. Int J Aviat Psychol. 2000 Oct;10(4):393-410 - PubMed
  20. Neurosci Lett. 1998 Sep 4;253(2):107-10 - PubMed
  21. Int J Psychophysiol. 2000 Aug;37(2):207-17 - PubMed
  22. Trends Cogn Sci. 2015 Apr;19(4):188-95 - PubMed
  23. Brain Res Brain Res Rev. 1999 Apr;29(2-3):169-95 - PubMed
  24. Electroencephalogr Clin Neurophysiol. 1992 Jul;83(1):62-9 - PubMed

Publication Types