Display options
Share it on

Front Microbiol. 2016 May 09;7:688. doi: 10.3389/fmicb.2016.00688. eCollection 2016.

Pseudomonas aeruginosa Exhibits Deficient Biofilm Formation in the Absence of Class II and III Ribonucleotide Reductases Due to Hindered Anaerobic Growth.

Frontiers in microbiology

Anna Crespo, Lucas Pedraz, Josep Astola, Eduard Torrents

Affiliations

  1. Bacterial Infections and Antimicrobial Therapies, Institute for Bioengineering of Catalonia Barcelona, Spain.

PMID: 27242714 PMCID: PMC4860495 DOI: 10.3389/fmicb.2016.00688

Abstract

Chronic lung infections by the ubiquitous and extremely adaptable opportunistic pathogen Pseudomonas aeruginosa correlate with the formation of a biofilm, where bacteria grow in association with an extracellular matrix and display a wide range of changes in gene expression and metabolism. This leads to increased resistance to physical stress and antibiotic therapies, while enhancing cell-to-cell communication. Oxygen diffusion through the complex biofilm structure generates an oxygen concentration gradient, leading to the appearance of anaerobic microenvironments. Ribonucleotide reductases (RNRs) are a family of highly sophisticated enzymes responsible for the synthesis of the deoxyribonucleotides, and they constitute the only de novo pathway for the formation of the building blocks needed for DNA synthesis and repair. P. aeruginosa is one of the few bacteria encoding all three known RNR classes (Ia, II, and III). Class Ia RNRs are oxygen dependent, class II are oxygen independent, and class III are oxygen sensitive. A tight control of RNR activity is essential for anaerobic growth and therefore for biofilm development. In this work we explored the role of the different RNR classes in biofilm formation under aerobic and anaerobic initial conditions and using static and continuous-flow biofilm models. We demonstrated the importance of class II and III RNR for proper cell division in biofilm development and maturation. We also determined that these classes are transcriptionally induced during biofilm formation and under anaerobic conditions. The molecular mechanism of their anaerobic regulation was also studied, finding that the Anr/Dnr system is responsible for class II RNR induction. These data can be integrated with previous knowledge about biofilms in a model where these structures are understood as a set of layers determined by oxygen concentration and contain cells with different RNR expression profiles, bringing us a step closer to the understanding of this complex growth pattern, essential for P. aeruginosa chronic infections.

Keywords: DNA synthesis; Pseudomonas aeruginosa; anaerobic metabolism; biofilm formation; nrd genes; oxygen diffusion; ribonucleotide reductases; vitamin B12

References

  1. Int J Med Microbiol. 2010 Dec;300(8):549-56 - PubMed
  2. J Bacteriol. 2007 Jun;189(12):4449-55 - PubMed
  3. PLoS One. 2011 Jan 18;6(1):e16105 - PubMed
  4. Nucleic Acids Res. 1997 Jun 1;25(11):2227-8 - PubMed
  5. Pathogens. 2013 May 13;2(2):288-356 - PubMed
  6. PLoS One. 2015 Jul 30;10(7):e0134293 - PubMed
  7. Environ Microbiol. 2010 Jun;12(6):1719-33 - PubMed
  8. Infect Immun. 2005 Jun;73(6):3764-72 - PubMed
  9. Infect Immun. 2011 Jul;79(7):2663-9 - PubMed
  10. Science. 1999 May 21;284(5418):1318-22 - PubMed
  11. Chest. 2009 Jan;135(1):173-80 - PubMed
  12. Life (Basel). 2015 Feb 27;5(1):604-36 - PubMed
  13. Front Cell Infect Microbiol. 2014 Apr 28;4:52 - PubMed
  14. Microbiology. 2003 Jan;149(Pt 1):29-36 - PubMed
  15. Microbiology. 2008 Oct;154(Pt 10):3053-60 - PubMed
  16. Dev Cell. 2002 Oct;3(4):593-603 - PubMed
  17. J Control Release. 2015 Jul 10;209:150-8 - PubMed
  18. Trends Microbiol. 2009 Mar;17(3):130-8 - PubMed
  19. Int J Med Microbiol. 2014 Nov;304(8):1050-61 - PubMed
  20. Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):208-13 - PubMed
  21. Front Microbiol. 2011 May 05;2:103 - PubMed
  22. PLoS One. 2015 Apr 24;10(4):e0123571 - PubMed
  23. Nat Rev Microbiol. 2008 Mar;6(3):199-210 - PubMed
  24. Appl Environ Microbiol. 2004 Oct;70(10):6188-96 - PubMed
  25. PLoS One. 2012;7(9):e46350 - PubMed
  26. Infect Immun. 2012 May;80(5):1639-49 - PubMed
  27. J Bacteriol. 2003 Mar;185(5):1485-91 - PubMed
  28. J Vis Exp. 2011 Jan 15;(47):null - PubMed
  29. BMJ. 2007 Dec 15;335(7632):1255-9 - PubMed
  30. Biochem Biophys Res Commun. 1996 Dec 4;229(1):189-92 - PubMed
  31. BMC Genomics. 2006 Jun 26;7:162 - PubMed
  32. PLoS One. 2015 Feb 23;10(2):e0118235 - PubMed
  33. J Bacteriol. 2007 Jun;189(11):4310-4 - PubMed
  34. Crit Rev Biochem Mol Biol. 2012 Jan-Feb;47(1):50-63 - PubMed
  35. Appl Environ Microbiol. 1998 Oct;64(10):4035-9 - PubMed
  36. Appl Environ Microbiol. 1994 Apr;60(4):1053-8 - PubMed
  37. Clin Microbiol Rev. 2002 Apr;15(2):194-222 - PubMed
  38. Methods Enzymol. 1999;310:20-42 - PubMed
  39. Biotechniques. 2005 Jan;38(1):63-7 - PubMed
  40. Antimicrob Agents Chemother. 2006 Jan;50(1):382-4 - PubMed
  41. J Biol Chem. 2005 Apr 29;280(17 ):16571-8 - PubMed
  42. Curr Opin Microbiol. 2014 Apr;18:39-45 - PubMed
  43. Microbiology. 2009 Sep;155(Pt 9):2838-44 - PubMed
  44. J Bacteriol. 2013 Apr;195(7):1371-80 - PubMed
  45. Annu Rev Biochem. 2011;80:733-67 - PubMed
  46. Infect Immun. 2007 Aug;75(8):3780-90 - PubMed
  47. Mol Microbiol. 2007 Jul;65(1):153-65 - PubMed
  48. J Bacteriol. 2005 Dec;187(23):8185-90 - PubMed

Publication Types