Display options
Share it on

Front Microbiol. 2016 May 19;7:752. doi: 10.3389/fmicb.2016.00752. eCollection 2016.

Snapshot of a Bacterial Microbiome Shift during the Early Symptoms of a Massive Sponge Die-Off in the Western Mediterranean.

Frontiers in microbiology

Andrea Blanquer, Maria J Uriz, Emma Cebrian, Pierre E Galand

Affiliations

  1. Centre d'Estudis Avançats de Blanes, Consejo Superior de Investigaciones Científicas Girona, Spain.
  2. Centre d'Estudis Avançats de Blanes, Consejo Superior de Investigaciones CientíficasGirona, Spain; Departament de Ciències Ambientals, Facultat de Ciències, Universitat de GironaGirona, Spain.
  3. Laboratoire d'Ecogéochimie des Environnements Benthiques, Observatoire Océanologique de Banyuls, Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Centre National de la Recherche Scientifique Paris, France.

PMID: 27242765 PMCID: PMC4871885 DOI: 10.3389/fmicb.2016.00752

Abstract

Ocean warming is affecting marine benthic ecosystems through mass mortality events that involve marine invertebrates, in particular bivalves, corals, and sponges. Among these events, extensive die-offs of Ircinia fasciculata sponges have been recurrently reported in western Mediterranean. The goal of our study was to test whether the temperature-related mass sponge die-offs were associated with or preceded by an early unbalanced bacterial microbiome in the sponge tissues. We took advantage of the early detection of disease and compared the microbiomes of healthy vs. early diseased I. fasciculata tissues. Our results showed a microbiome shift in early diseased tissues. The abundance of Gammaproteobacteria and Acidobacteria increased and that of Deltaproteobacteria decreased in diseased vs. healthy tissues. The change in community composition was also noticeable at the operational taxonomic unit (OTU) level. Diseased tissues contained more bacterial sequences previously identified in injured or stressed sponges and corals than healthy tissues. Bacterial diversity increased significantly in diseased tissues, which contained a higher number of low abundance OTUs. Our results do not support the hypothesis of one particular pathogen, whether a Vibrio or any other bacteria, triggering the Northwestern Mediterranean mass mortalities of I. fasciculata. Our data rather suggest an early disruption of the bacterial microbiome balance in healthy sponges through a shift in OTU abundances, and the purported consequent decline of the sponge fitness and resistance to infections. Opportunistic bacteria could colonize the sponge tissues, taking benefit of the sponge weakness, before one or more virulent pathogens might proliferate ending in the mass sponge die-off.

Keywords: Ircinia fasciculata; bacterial symbionts; early disease symptoms; keratose sponges; mass die-off; microbiome profiling; microbiome shifts; western Mediterranean

References

  1. Appl Environ Microbiol. 2006 Jul;72(7):5069-72 - PubMed
  2. PeerJ. 2015 Jun 11;3:e890 - PubMed
  3. Environ Microbiol. 2010 Jul;12(7):1889-98 - PubMed
  4. Bioinformatics. 2014 Nov 1;30(21):3123-4 - PubMed
  5. Environ Microbiol. 2002 Jul;4(7):401-13 - PubMed
  6. Science. 2002 Jun 21;296(5576):2158-62 - PubMed
  7. PLoS One. 2011;6(6):e20211 - PubMed
  8. FEMS Microbiol Ecol. 2011 Feb;75(2):218-30 - PubMed
  9. Adv Mar Biol. 2012;62:273-337 - PubMed
  10. Microb Ecol. 2012 Oct;64(3):802-13 - PubMed
  11. Appl Environ Microbiol. 2008 Feb;74(4):1209-22 - PubMed
  12. FEMS Microbiol Ecol. 2012 Mar;79(3):619-37 - PubMed
  13. Appl Environ Microbiol. 2010 Sep;76(17):5736-44 - PubMed
  14. Int J Syst Evol Microbiol. 2003 Jan;53(Pt 1):309-15 - PubMed
  15. Environ Microbiol. 2012 Dec;14(12):3232-46 - PubMed
  16. Microb Ecol. 2014 Oct;68(3):621-32 - PubMed
  17. Environ Microbiol. 2013 Nov;15(11):3008-19 - PubMed
  18. Mar Biotechnol (NY). 2015 Aug;17(4):463-78 - PubMed
  19. Appl Environ Microbiol. 2002 May;68(5):2214-28 - PubMed
  20. Environ Microbiol. 2008 Dec;10(12):3366-76 - PubMed
  21. Environ Microbiol. 2007 Jun;9(6):1363-75 - PubMed
  22. PLoS One. 2008 Jun 18;3(6):e2393 - PubMed
  23. ISME J. 2009 Feb;3(2):139-46 - PubMed
  24. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 - PubMed
  25. Dis Aquat Organ. 2006 Jul 25;71(2):163-8 - PubMed
  26. Appl Environ Microbiol. 2008 Jul;74(13):4133-43 - PubMed
  27. Environ Microbiol. 2002 Jun;4(6):318-26 - PubMed
  28. Aquat Toxicol. 2009 Sep 14;94(3):204-10 - PubMed
  29. J Mol Biol. 1990 Oct 5;215(3):403-10 - PubMed
  30. Dis Aquat Organ. 2012 Jun 13;99(2):95-102 - PubMed
  31. Environ Microbiol. 2009 Dec;11(12):3132-9 - PubMed
  32. Microb Ecol. 2010 Oct;60(3):561-71 - PubMed
  33. FEMS Microbiol Ecol. 2014 Jan;87(1):268-79 - PubMed
  34. Science. 1983 Jan 28;219(4583):410-2 - PubMed
  35. Environ Toxicol Chem. 2001 Nov;20(11):2588-93 - PubMed
  36. C R Acad Sci III. 2000 Oct;323(10):853-65 - PubMed
  37. J Fla Med Assoc. 1993 Jun;80(6):409-11 - PubMed
  38. Bioinformatics. 2010 Oct 1;26(19):2460-1 - PubMed
  39. Environ Microbiol. 2010 Jan;12(1):118-23 - PubMed
  40. ISME J. 2008 Apr;2(4):350-63 - PubMed
  41. Microb Ecol. 2012 Oct;64(3):771-83 - PubMed
  42. Appl Environ Microbiol. 2012 Oct;78(20):7358-68 - PubMed
  43. Appl Environ Microbiol. 2011 Oct;77(20):7207-16 - PubMed
  44. FEMS Microbiol Ecol. 2013 Nov;86(2):268-76 - PubMed
  45. Mol Ecol. 2008 Apr;17(7):1840-9 - PubMed
  46. PLoS One. 2013 Nov 28;8(11):e80307 - PubMed

Publication Types