Display options
Share it on

J Am Chem Soc. 2016 Jun 08;138(22):7082-90. doi: 10.1021/jacs.6b02830. Epub 2016 May 25.

Influence of the Ion Coordination Number on Cation Exchange Reactions with Copper Telluride Nanocrystals.

Journal of the American Chemical Society

Renyong Tu, Yi Xie, Giovanni Bertoni, Aidin Lak, Roberto Gaspari, Arnaldo Rapallo, Andrea Cavalli, Luca De Trizio, Liberato Manna

Affiliations

  1. Department of Nanochemistry, Istituto Italiano di Tecnologia (IIT) , via Morego, 30, 16163 Genova, Italy.
  2. Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova , via Dodecaneso, 31, 16146 Genova, Italy.
  3. State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology (WUT) , No. 122, Luoshi Road, Wuhan 430070, PR China.
  4. IMEM-CNR , Parco Area delle Scienze, 37/A, 43124 Parma, Italy.
  5. Drug Discovery and Development, Istituto Italiano di Tecnologia (IIT) , via Morego, 30, 16163 Genova, Italy.
  6. CompuNet, Istituto Italiano di Tecnologia (IIT) , via Morego, 30, 16163 Genova, Italy.
  7. ISMAC - Istituto per lo Studio delle Macromolecole del CNR , via Bassini, 15, 20133 Milano, Italy.
  8. Department of Pharmacy and Biotechnology, University of Bologna , via Belmeloro, 6, 40126 Bologna, Italy.

PMID: 27177274 PMCID: PMC5736242 DOI: 10.1021/jacs.6b02830

Abstract

Cu2-xTe nanocubes were used as starting seeds to access metal telluride nanocrystals by cation exchanges at room temperature. The coordination number of the entering cations was found to play an important role in dictating the reaction pathways. The exchanges with tetrahedrally coordinated cations (i.e., with coordination number 4), such as Cd(2+) or Hg(2+), yielded monocrystalline CdTe or HgTe nanocrystals with Cu2-xTe/CdTe or Cu2-xTe/HgTe Janus-like heterostructures as intermediates. The formation of Janus-like architectures was attributed to the high diffusion rate of the relatively small tetrahedrally coordinated cations, which could rapidly diffuse in the Cu2-xTe NCs and nucleate the CdTe (or HgTe) phase in a preferred region of the host structure. Also, with both Cd(2+) and Hg(2+) ions the exchange led to wurtzite CdTe and HgTe phases rather than the more stable zinc-blende ones, indicating that the anion framework of the starting Cu2-xTe particles could be more easily deformed to match the anion framework of the metastable wurtzite structures. As hexagonal HgTe had never been reported to date, this represents another case of metastable new phases that can only be accessed by cation exchange. On the other hand, the exchanges involving octahedrally coordinated ions (i.e., with coordination number 6), such as Pb(2+) or Sn(2+), yielded rock-salt polycrystalline PbTe or SnTe nanocrystals with Cu2-xTe@PbTe or Cu2-xTe@SnTe core@shell architectures at the early stages of the exchange process. In this case, the octahedrally coordinated ions are probably too large to diffuse easily through the Cu2-xTe structure: their limited diffusion rate restricts their initial reaction to the surface of the nanocrystals, where cation exchange is initiated unselectively, leading to core@shell architectures. Interestingly, these heterostructures were found to be metastable as they evolved to stable Janus-like architectures if annealed at 200 °C under vacuum.

References

  1. J Am Chem Soc. 2014 Nov 19;136(46):16277-84 - PubMed
  2. ACS Nano. 2010 Apr 27;4(4):2307-19 - PubMed
  3. J Am Chem Soc. 2012 Mar 28;134(12):5484-7 - PubMed
  4. ACS Nano. 2015 Jul 28;9(7):7151-63 - PubMed
  5. Phys Rev Lett. 2014 Oct 10;113(15):156803 - PubMed
  6. Nano Lett. 2014 Feb 12;14(2):987-92 - PubMed
  7. J Am Chem Soc. 2011 Sep 21;133(37):14500-3 - PubMed
  8. Nano Lett. 2014 Jun 11;14(6):3661-7 - PubMed
  9. Nat Commun. 2013;4:2933 - PubMed
  10. J Am Chem Soc. 2008 Apr 9;130(14):4879-85 - PubMed
  11. J Am Chem Soc. 2015 Jul 29;137(29):9315-23 - PubMed
  12. J Am Chem Soc. 2015 Sep 30;137(38):12195-8 - PubMed
  13. Chem Mater. 2014 Oct 28;26(20):5914-5922 - PubMed
  14. ACS Nano. 2014 Aug 26;8(8):7948-57 - PubMed
  15. J Am Chem Soc. 2013 Aug 21;135(33):12270-8 - PubMed
  16. Langmuir. 2007 Mar 13;23(6):2985-92 - PubMed
  17. Angew Chem Int Ed Engl. 2011 Feb 1;50(5):1185-9 - PubMed
  18. J Am Chem Soc. 2016 Jan 20;138(2):471-4 - PubMed
  19. Nano Lett. 2015 Apr 8;15(4):2504-9 - PubMed
  20. ACS Nano. 2015 Jul 28;9(7):7419-28 - PubMed
  21. Nanoscale. 2014 Aug 7;6(15):8852-7 - PubMed
  22. Chem Soc Rev. 2013 Jan 7;42(1):89-96 - PubMed
  23. Chem Commun (Camb). 2010 Aug 7;46(29):5301-3 - PubMed
  24. Nano Lett. 2011 Nov 9;11(11):4964-70 - PubMed
  25. Chem Mater. 2015 Feb 10;27(3):1120-1128 - PubMed
  26. Adv Mater. 2013 Dec 23;25(48):6923-43 - PubMed
  27. J Phys Chem Lett. 2015 Dec 3;6(23):4711-6 - PubMed
  28. ACS Nano. 2013 Sep 24;7(9):7913-30 - PubMed
  29. Angew Chem Int Ed Engl. 2015 Nov 16;54(47):14183-6 - PubMed
  30. Nano Lett. 2012 May 9;12(5):2587-94 - PubMed
  31. ACS Nano. 2015 Jan 27;9(1):539-47 - PubMed
  32. J Am Chem Soc. 2013 May 15;135(19):7098-101 - PubMed
  33. Chem Rev. 2016 Sep 28;116(18):10852-87 - PubMed
  34. Science. 2004 Nov 5;306(5698):1009-12 - PubMed
  35. Nano Lett. 2011 Aug 10;11(8):3420-4 - PubMed

Publication Types

Grant support