Display options
Share it on

ACS Cent Sci. 2016 May 25;2(5):351-8. doi: 10.1021/acscentsci.6b00057. Epub 2016 Apr 26.

Detection of Active Mammalian GH31 α-Glucosidases in Health and Disease Using In-Class, Broad-Spectrum Activity-Based Probes.

ACS central science

Jianbing Jiang, Chi-Lin Kuo, Liang Wu, Christian Franke, Wouter W Kallemeijn, Bogdan I Florea, Eline van Meel, Gijsbert A van der Marel, Jeroen D C Codée, Rolf G Boot, Gideon J Davies, Herman S Overkleeft, Johannes M F G Aerts

Affiliations

  1. Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, 2333 CC Leiden, The Netherlands.
  2. Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, 2333 CC Leiden, The Netherlands.
  3. Department of Chemistry, University of York , Heslington, York, YO10 5DD, U.K.

PMID: 27280170 PMCID: PMC4882745 DOI: 10.1021/acscentsci.6b00057

Abstract

The development of small molecule activity-based probes (ABPs) is an evolving and powerful area of chemistry. There is a major need for synthetically accessible and specific ABPs to advance our understanding of enzymes in health and disease. α-Glucosidases are involved in diverse physiological processes including carbohydrate assimilation in the gastrointestinal tract, glycoprotein processing in the endoplasmic reticulum (ER), and intralysosomal glycogen catabolism. Inherited deficiency of the lysosomal acid α-glucosidase (GAA) causes the lysosomal glycogen storage disorder, Pompe disease. Here, we design a synthetic route for fluorescent and biotin-modified ABPs for in vitro and in situ monitoring of α-glucosidases. We show, through mass spectrometry, gel electrophoresis, and X-ray crystallography, that α-glucopyranose configured cyclophellitol aziridines label distinct retaining α-glucosidases including GAA and ER α-glucosidase II, and that this labeling can be tuned by pH. We illustrate a direct diagnostic application in Pompe disease patient cells, and discuss how the probes may be further exploited for diverse applications.

References

  1. Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14694-9 - PubMed
  2. Chem Biol. 2000 Aug;7(8):569-81 - PubMed
  3. Biochem J. 2001 Oct 15;359(Pt 2):381-6 - PubMed
  4. Biochem J. 1963 Jan;86:11-6 - PubMed
  5. J Biol Chem. 2005 Feb 25;280(8):6780-91 - PubMed
  6. J Neurol. 2005 Aug;252(8):875-84 - PubMed
  7. J Org Chem. 2005 Nov 25;70(24):10139-42 - PubMed
  8. J Pediatr. 2006 May;148(5):671-676 - PubMed
  9. Neurology. 2007 Jan 9;68(2):99-109 - PubMed
  10. N Engl J Med. 2010 Apr 15;362(15):1396-406 - PubMed
  11. Nat Chem Biol. 2010 Dec;6(12):907-13 - PubMed
  12. Acc Chem Res. 2012 Feb 21;45(2):308-16 - PubMed
  13. Biochem J. 1990 Dec 1;272(2):493-7 - PubMed
  14. J Biol Chem. 2012 Dec 21;287(52):43288-99 - PubMed
  15. Angew Chem Int Ed Engl. 2012 Dec 7;51(50):12529-33 - PubMed
  16. Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5 - PubMed
  17. ACS Med Chem Lett. 2010 Dec 02;2(2):119-23 - PubMed
  18. Curr Opin Struct Biol. 2014 Oct;28:1-13 - PubMed
  19. J Am Chem Soc. 2014 Aug 20;136(33):11622-5 - PubMed
  20. Org Biomol Chem. 2015 May 28;13(20):5690-7 - PubMed
  21. Chemistry. 2015 Jul 20;21(30):10861-9 - PubMed
  22. Chem Commun (Camb). 2015 Jul 21;51(57):11390-3 - PubMed
  23. Biochem Soc Trans. 2016 Feb;44(1):79-87 - PubMed
  24. Chem Sci. 2015 May 1;6(5):2782-false - PubMed
  25. J Biochem. 1979 May;85(5):1135-41 - PubMed
  26. J Cell Biol. 1981 Sep;90(3):665-9 - PubMed
  27. Muscle Nerve Suppl. 1995;3:S61-9 - PubMed
  28. J Biol Chem. 1993 Jan 25;268(3):2223-31 - PubMed

Publication Types

Grant support