Display options
Share it on

Plant Methods. 2016 May 20;12:29. doi: 10.1186/s13007-016-0129-3. eCollection 2016.

Solanum venturii, a suitable model system for virus-induced gene silencing studies in potato reveals StMKK6 as an important player in plant immunity.

Plant methods

David Dobnik, Ana Lazar, Tjaša Stare, Kristina Gruden, Vivianne G A A Vleeshouwers, Jana Žel

Affiliations

  1. Department of Biotechnology and Systems Biology, National Institute of Biology, Ve?na Pot 111, 1000 Ljubljana, Slovenia.
  2. Wageningen UR Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ Wageningen, The Netherlands.

PMID: 27213007 PMCID: PMC4875682 DOI: 10.1186/s13007-016-0129-3

Abstract

BACKGROUND: Virus-induced gene silencing (VIGS) is an optimal tool for functional analysis of genes in plants, as the viral vector spreads throughout the plant and causes reduced expression of selected gene over the whole plant. Potato (Solanum tuberosum) is one of the most important food crops, therefore studies performing functional analysis of its genes are very important. However, the majority of potato cultivars used in laboratory experimental setups are not well amenable to available VIGS systems, thus other model plants from Solanaceae family are used (usually Nicotiana benthamiana). Wild potato relatives can be a better choice for potato model, but their potential in this field was yet not fully explored. This manuscript presents the set-up of VIGS, based on Tobacco rattle virus (TRV) in wild potato relatives for functional studies in potato-virus interactions.

RESULTS: Five different potato cultivars, usually used in our lab, did not respond to silencing of phytoene desaturase (PDS) gene with TRV-based vector. Thus screening of a large set of wild potato relatives (different Solanum species and their clones) for their susceptibility to VIGS was performed by silencing PDS gene. We identified several responsive species and further tested susceptibility of these genotypes to potato virus Y (PVY) strain NTN and N. In some species we observed that the presence of empty TRV vector restricted the movement of PVY. Fluorescently tagged PVY(N)-GFP spread systemically in only five of tested wild potato relatives. Based on the results, Solanum venturii (VNT366-2) was selected as the most suitable system for functional analysis of genes involved in potato-PVY interaction. The system was tested by silencing two different plant immune signalling-related kinases, StWIPK and StMKK6. Silencing of StMKK6 enabled faster spreading of the virus throughout the plant, while silencing of WIPK had no effect on spreading of the virus.

CONCLUSIONS: The system employing S. venturii (VNT366-2) and PVY(N)-GFP is a suitable method for fast and simple functional analysis of genes involved in potato-PVY interactions. Additionally, a set of identified VIGS responsive species of wild potato relatives could serve as a tool for general studies of potato gene function.

Keywords: PVY; Potato; Potato virus Y; Solanum venturii; StMKK6; StWIPK; TRV; VIGS; Virus-induced gene silencing

References

  1. BMC Genomics. 2009 Oct 02;10:460 - PubMed
  2. Mol Plant Microbe Interact. 2012 Aug;25(8):1015-25 - PubMed
  3. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7433-8 - PubMed
  4. Mol Plant Pathol. 2015 Jun;16(5):529-40 - PubMed
  5. Plant Cell Physiol. 2010 Oct;51(10 ):1766-76 - PubMed
  6. Plant J. 2004 Jun;38(5):800-9 - PubMed
  7. Plant J. 2002 Sep;31(6):777-86 - PubMed
  8. Genes Dev. 2003 Apr 15;17 (8):1055-67 - PubMed
  9. Methods Mol Biol. 2008;451:583-613 - PubMed
  10. Plant J. 2004 Nov;40(4):512-22 - PubMed
  11. Cell. 2000 Dec 22;103(7):1111-20 - PubMed
  12. Mol Biol Rep. 2012 Mar;39(3):2957-66 - PubMed
  13. Plant J. 2004 Jul;39(2):264-72 - PubMed
  14. Planta. 1998 Nov;206(4):577-84 - PubMed
  15. Planta. 2001 Oct;213(6):916-26 - PubMed
  16. Int J Plant Genomics. 2009;2009:198680 - PubMed
  17. Plant Physiol. 2005 Sep;139(1):127-37 - PubMed
  18. Trends Plant Sci. 2006 Apr;11(4):192-8 - PubMed
  19. Mol Plant Pathol. 2011 Dec;12(9):938-54 - PubMed
  20. PLoS One. 2014 Aug 11;9(8):e104553 - PubMed
  21. J Vis Exp. 2014 Jan 03;(83):e50971 - PubMed
  22. Mol Plant Pathol. 2009 Mar;10(2):263-75 - PubMed
  23. Curr Opin Plant Biol. 1999 Apr;2(2):109-13 - PubMed
  24. Plant J. 2007 Mar;49(5):899-909 - PubMed
  25. EMBO J. 2004 Aug 4;23(15):3072-82 - PubMed
  26. J Exp Bot. 2014 Mar;65(4):1095-109 - PubMed
  27. Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2940-5 - PubMed
  28. New Phytol. 2007;173(4):713-21 - PubMed
  29. Plant J. 2010 Aug;63(4):599-612 - PubMed
  30. Plant J. 2005 May;42(3):406-16 - PubMed
  31. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):7225-30 - PubMed
  32. Mol Plant Microbe Interact. 2006 Nov;19(11):1207-15 - PubMed
  33. PLoS One. 2011;6(12):e29009 - PubMed
  34. Plant J. 2003 Apr;34(2):149-60 - PubMed
  35. Plant J. 2007 Sep;51(6):941-54 - PubMed
  36. Mol Biol Rep. 2013 Feb;40(2):957-67 - PubMed
  37. Plant J. 2001 Jan;25(2):237-45 - PubMed
  38. Mol Plant Microbe Interact. 2015 Jul;28(7):739-50 - PubMed
  39. Plant Biotechnol Rep. 2013;7:547-555 - PubMed
  40. Mol Plant Microbe Interact. 2009 Nov;22(11):1431-44 - PubMed
  41. Plant Physiol. 2004 Apr;134(4):1308-16 - PubMed
  42. BMC Plant Biol. 2011 Aug 18;11:116 - PubMed
  43. PLoS One. 2013 Jun 24;8(6):e66809 - PubMed
  44. Plant J. 2010 Nov;64(3):379-91 - PubMed
  45. Plant J. 2003 Feb;33(4):719-31 - PubMed
  46. Plant Cell. 2011 Mar;23 (3):1153-70 - PubMed
  47. Plant J. 2006 Aug;47(4):532-46 - PubMed
  48. BMC Evol Biol. 2008 May 14;8:145 - PubMed
  49. J Virol Methods. 2008 Apr;149(1):1-11 - PubMed
  50. Plant Cell. 2007 Jan;19(1):63-73 - PubMed
  51. Appl Environ Microbiol. 2000 Jul;66(7):2853-8 - PubMed

Publication Types