Display options
Share it on

Front Comput Neurosci. 2016 Apr 19;10:30. doi: 10.3389/fncom.2016.00030. eCollection 2016.

A Hybrid Model for the Computationally-Efficient Simulation of the Cerebellar Granular Layer.

Frontiers in computational neuroscience

Anna Cattani, Sergio Solinas, Claudio Canuto

Affiliations

  1. Laboratory of Neural Computation, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia Rovereto, Italy.
  2. Department of Brain and Behavioural Science, University of Pavia Pavia, Italy.
  3. Department of Mathematical Sciences, Polytechnic University of Turin Torino, Italy.

PMID: 27148027 PMCID: PMC4837690 DOI: 10.3389/fncom.2016.00030

Abstract

The aim of the present paper is to efficiently describe the membrane potential dynamics of neural populations formed by species having a high density difference in specific brain areas. We propose a hybrid model whose main ingredients are a conductance-based model (ODE system) and its continuous counterpart (PDE system) obtained through a limit process in which the number of neurons confined in a bounded region of the brain tissue is sent to infinity. Specifically, in the discrete model, each cell is described by a set of time-dependent variables, whereas in the continuum model, cells are grouped into populations that are described by a set of continuous variables. Communications between populations, which translate into interactions among the discrete and the continuous models, are the essence of the hybrid model we present here. The cerebellum and cerebellum-like structures show in their granular layer a large difference in the relative density of neuronal species making them a natural testing ground for our hybrid model. By reconstructing the ensemble activity of the cerebellar granular layer network and by comparing our results to a more realistic computational network, we demonstrate that our description of the network activity, even though it is not biophysically detailed, is still capable of reproducing salient features of neural network dynamics. Our modeling approach yields a significant computational cost reduction by increasing the simulation speed at least 270 times. The hybrid model reproduces interesting dynamics such as local microcircuit synchronization, traveling waves, center-surround, and time-windowing.

Keywords: cerebellum; conductance-based models; continuum models; hybrid models; neural networks

References

  1. Front Cell Neurosci. 2014 Aug 25;8:246 - PubMed
  2. Trends Neurosci. 2009 Jan;32(1):30-40 - PubMed
  3. Neuron. 2012 Jan 12;73(1):149-58 - PubMed
  4. Neural Comput. 2006 Dec;18(12):2959-93 - PubMed
  5. Neuroinformatics. 2003;1(1):135-9 - PubMed
  6. J Comput Neurosci. 2004 Jul-Aug;17(1):7-11 - PubMed
  7. Biophys J. 1972 Jan;12(1):1-24 - PubMed
  8. J Physiol Paris. 2003 Jul-Nov;97(4-6):591-600 - PubMed
  9. Nat Neurosci. 2011 Feb;14(2):217-23 - PubMed
  10. J Neurophysiol. 1998 Nov;80(5):2521-37 - PubMed
  11. Front Cell Neurosci. 2010 May 14;4:12 - PubMed
  12. Nature. 2009 May 28;459(7246):534-9 - PubMed
  13. Biol Cybern. 1977 Aug 3;27(2):77-87 - PubMed
  14. Brain Res. 1993 Apr 23;609(1-2):262-8 - PubMed
  15. Kybernetik. 1973 Sep;13(2):55-80 - PubMed
  16. Neuron. 2009 Jan 15;61(1):126-39 - PubMed
  17. J Physiol. 1969 Jun;202(2):437-70 - PubMed
  18. J Comp Neurol. 1958 Feb;109(1):1-33 - PubMed
  19. Annu Rev Neurosci. 2008;31:1-24 - PubMed
  20. J Comput Neurosci. 1994 Aug;1(3):195-230 - PubMed
  21. J Physiol. 1998 Aug 1;510 ( Pt 3):845-66 - PubMed
  22. J Neurosci. 1999 Jun 1;19(11):RC6 - PubMed
  23. Neuron. 2010 Aug 12;67(3):435-51 - PubMed
  24. Front Neurosci. 2009 Sep 15;3(2):192-7 - PubMed
  25. PLoS One. 2015 Nov 11;10(11):e0140866 - PubMed
  26. PLoS Comput Biol. 2008 Aug 29;4(8):e1000092 - PubMed
  27. Front Cell Neurosci. 2010 May 28;4:14 - PubMed
  28. Front Neural Circuits. 2013 Apr 10;7:64 - PubMed
  29. Neuron. 2014 Aug 20;83(4):960-74 - PubMed
  30. Neural Syst Circuits. 2011 Mar 01;1(1):7 - PubMed
  31. Biophys J. 1961 Jul;1(6):445-66 - PubMed
  32. Nature. 2015 May 28;521(7553):436-44 - PubMed
  33. J Neurophysiol. 2007 Jan;97(1):248-63 - PubMed
  34. Nat Neurosci. 2009 Apr;12 (4):463-73 - PubMed
  35. Neuroscience. 2008 Sep 22;156(1):216-21 - PubMed
  36. Front Cell Neurosci. 2014 Apr 15;8:92 - PubMed
  37. J Neurophysiol. 2010 Jan;103(1):250-61 - PubMed
  38. Neuron. 2003 Aug 28;39(5):821-9 - PubMed
  39. J Neurosci. 2001 Oct 15;21(20):RC173 - PubMed

Publication Types