Display options
Share it on

Front Physiol. 2016 Apr 13;7:121. doi: 10.3389/fphys.2016.00121. eCollection 2016.

External Mechanical Work and Pendular Energy Transduction of Overground and Treadmill Walking in Adolescents with Unilateral Cerebral Palsy.

Frontiers in physiology

Marie Zollinger, Francis Degache, Gabriel Currat, Ludmila Pochon, Nicolas Peyrot, Christopher J Newman, Davide Malatesta

Affiliations

  1. Institute of Sport Sciences of University of Lausanne, University of Lausanne Lausanne, Switzerland.
  2. Health Research Unit, School of Health Sciences, University of Applied Sciences Western Switzerland Lausanne, Switzerland.
  3. IRISSE Laboratory (EA4075), UFR SHE, University of La Réunion Le Tampon, France.
  4. Pediatric Neurology and Neurorehabilitation Unit, Lausanne University Hospital Lausanne, Switzerland.
  5. Institute of Sport Sciences of University of Lausanne, University of LausanneLausanne, Switzerland; Department of Physiology, Faculty of Biology and Medicine, University of LausanneLausanne, Switzerland.

PMID: 27148062 PMCID: PMC4829600 DOI: 10.3389/fphys.2016.00121

Abstract

PURPOSE: Motor impairments affect functional abilities and gait in children and adolescents with cerebral palsy (CP). Improving their walking is an essential objective of treatment, and the use of a treadmill for gait analysis and training could offer several advantages in adolescents with CP. However, there is a controversy regarding the similarity between treadmill and overground walking both for gait analysis and training in children and adolescents. The aim of this study was to compare the external mechanical work and pendular energy transduction of these two types of gait modalities at standard and preferred walking speeds in adolescents with unilateral cerebral palsy (UCP) and typically developing (TD) adolescents matched on age, height and body mass.

METHODS: Spatiotemporal parameters, external mechanical work and pendular energy transduction of walking were computed using two inertial sensors equipped with a triaxial accelerometer and gyroscope and compared in 10 UCP (14.2 ± 1.7 year) and 10 TD (14.1 ± 1.9 year) adolescents during treadmill and overground walking at standard and preferred speeds.

RESULTS: The treadmill induced almost identical mechanical changes to overground walking in TD adolescents and those with UCP, with the exception of potential and kinetic vertical and lateral mechanical works, which are both significantly increased in the overground-treadmill transition only in UCP (P < 0.05).

CONCLUSIONS: Adolescents with UCP have a reduced adaptive capacity in absorbing and decelerating the speed created by a treadmill (i.e., dynamic stability) compared to TD adolescents. This may have an important implication in rehabilitation programs that assess and train gait by using a treadmill in adolescents with UCP.

Keywords: biomechanics; exercise; gait; human locomotion; inverted pendulum

References

  1. Dev Neurorehabil. 2012;15(2):114-8 - PubMed
  2. J Appl Physiol (1985). 2008 Mar;104(3):747-55 - PubMed
  3. J Appl Physiol (1985). 2011 Nov;111(5):1391-9 - PubMed
  4. Dev Neurorehabil. 2012;15(1):54-62 - PubMed
  5. J Exp Biol. 2003 Sep;206(Pt 17):2967-78 - PubMed
  6. J Appl Biomech. 2011 May;27(2):99-107 - PubMed
  7. Gait Posture. 1998 Jan 1;7(1):26-34 - PubMed
  8. Gait Posture. 2010 Mar;31(3):347-50 - PubMed
  9. Dev Med Child Neurol. 1997 Apr;39(4):214-23 - PubMed
  10. J Appl Physiol (1985). 2009 Jun;106(6):1763-70 - PubMed
  11. Gait Posture. 2000 Feb;11(1):46-53 - PubMed
  12. J Appl Physiol. 1975 Jul;39(1):174-9 - PubMed
  13. J Physiol. 1977 Jun;268(2):467--81 - PubMed
  14. Eur J Appl Physiol. 2007 Jun;100(3):331-9 - PubMed
  15. J Exp Biol. 2002 Dec;205(Pt 23):3717-27 - PubMed
  16. Disabil Rehabil. 2009;31(24):1971-9 - PubMed
  17. J Pediatr Orthop. 2007 Sep;27(6):643-7 - PubMed
  18. Clin Biomech (Bristol, Avon). 2009 Nov;24(9):729-34 - PubMed
  19. Neurorehabil Neural Repair. 2001;15(2):105-12 - PubMed
  20. J Appl Physiol (1985). 1985 Jul;59(1):87-91 - PubMed
  21. Electroencephalogr Clin Neurophysiol. 1997 Dec;105(6):490-7 - PubMed
  22. J Biomech. 2002 Jan;35(1):117-24 - PubMed
  23. Dev Med Child Neurol. 2004 Oct;46(10):674-80 - PubMed
  24. Phys Ther. 2004 Apr;84(4):344-54; discussion 355-8 - PubMed
  25. J Appl Physiol (1985). 1992 Jul;73(1):200-6 - PubMed
  26. Gait Posture. 2014 Sep;40(4):633-9 - PubMed
  27. Practitioner. 1964 Apr;192:540-2 - PubMed
  28. Rev Bras Fisioter. 2010 Sep-Oct;14(5):404-10 - PubMed
  29. Gait Posture. 2000 Dec;12(3):243-50 - PubMed
  30. Neurosci Res. 2005 Nov;53(3):343-8 - PubMed
  31. Gait Posture. 2006 Dec;24(4):502-9 - PubMed
  32. Gait Posture. 2014 Sep;40(4):587-93 - PubMed
  33. Gait Posture. 2007 Jan;25(1):25-32 - PubMed
  34. J Exp Biol. 2002 Nov;205(Pt 21):3413-22 - PubMed
  35. J Exp Biol. 2005 Jul;208(Pt 13):2503-14 - PubMed
  36. J Biomech. 2014 Dec 18;47(16):3807-12 - PubMed
  37. Arch Phys Med Rehabil. 2005 Nov;86(11):2189-94 - PubMed
  38. J Biomech. 2015 Oct 15;48(13):3577-83 - PubMed
  39. Med Sci Sports Exerc. 2009 Feb;41(2):426-34 - PubMed
  40. BMC Pediatr. 2014 Dec 05;14:292 - PubMed
  41. Med Sci Sports Exerc. 2010 Oct;42(10):1914-22 - PubMed
  42. Nat Neurosci. 2007 Aug;10(8):1055-62 - PubMed
  43. Clin Biomech (Bristol, Avon). 2014 Apr;29(4):381-6 - PubMed
  44. Phys Ther. 1987 Sep;67(9):1348-54 - PubMed
  45. Arch Phys Med Rehabil. 1999 Apr;80(4):421-7 - PubMed
  46. Gait Posture. 2009 Apr;29(3):471-6 - PubMed
  47. Gait Posture. 2009 Apr;29(3):465-70 - PubMed
  48. Gait Posture. 2007 Sep;26(3):400-6 - PubMed
  49. Obesity (Silver Spring). 2013 Dec;21(12):E586-91 - PubMed

Publication Types