Display options
Share it on

Front Microbiol. 2016 Apr 12;7:460. doi: 10.3389/fmicb.2016.00460. eCollection 2016.

Spatiotemporal Dynamics of Vibrio spp. within the Sydney Harbour Estuary.

Frontiers in microbiology

Nachshon Siboni, Varunan Balaraju, Richard Carney, Maurizio Labbate, Justin R Seymour

Affiliations

  1. Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Ultimo NSW, Australia.
  2. Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, UltimoNSW, Australia; School of Life Sciences, The ithree institute, University of Technology Sydney, UltimoNSW, Australia.
  3. School of Life Sciences, The ithree institute, University of Technology Sydney, Ultimo NSW, Australia.

PMID: 27148171 PMCID: PMC4829023 DOI: 10.3389/fmicb.2016.00460

Abstract

Vibrio are a genus of marine bacteria that have substantial environmental and human health importance, and there is evidence that their impact may be increasing as a consequence of changing environmental conditions. We investigated the abundance and composition of the Vibrio community within the Sydney Harbour estuary, one of the most densely populated coastal areas in Australia, and a region currently experiencing rapidly changing environmental conditions. Using quantitative PCR (qPCR) and Vibrio-specific 16S rRNA amplicon sequencing approaches we observed significant spatial and seasonal variation in the abundance and composition of the Vibrio community. Total Vibrio spp. abundance, derived from qPCR analysis, was higher during the late summer than winter and within locations with mid-range salinity (5-26 ppt). In addition we targeted three clinically important pathogens: Vibrio cholerae, V. Vulnificus, and V. parahaemolyticus. While toxigenic strains of V. cholerae were not detected in any samples, non-toxigenic strains were detected in 71% of samples, spanning a salinity range of 0-37 ppt and were observed during both late summer and winter. In contrast, pathogenic V. vulnificus was only detected in 14% of samples, with its occurrence restricted to the late summer and a salinity range of 5-26 ppt. V. parahaemolyticus was not observed at any site or time point. A Vibrio-specific 16S rRNA amplicon sequencing approach revealed clear shifts in Vibrio community composition across sites and between seasons, with several Vibrio operational taxonomic units (OTUs) displaying marked spatial patterns and seasonal trends. Shifts in the composition of the Vibrio community between seasons were primarily driven by changes in temperature, salinity and NO2, while a range of factors including pH, salinity, dissolved oxygen (DO) and NOx (Nitrogen Oxides) explained the observed spatial variation. Our evidence for the presence of a spatiotemporally dynamic Vibrio community within Sydney Harbour is notable given the high levels of human use of this waterway, and the significant increases in seawater temperature predicted for this region.

Keywords: Vibrio; Vibrio cholerae; Vibrio parahaemolyticus; Vibrio vulnificus; abundance and diversity; seasonal variation

References

  1. Front Microbiol. 2013 Dec 27;4:414 - PubMed
  2. Med J Aust. 1986 Mar 3;144(5):229-34 - PubMed
  3. Infect Immun. 2009 May;77(5):1723-33 - PubMed
  4. J Microbiol. 2008 Apr;46(2):146-53 - PubMed
  5. Epidemiol Infect. 1995 Dec;115(3):435-46 - PubMed
  6. Int J Food Microbiol. 1988 May;6(3):207-18 - PubMed
  7. BMC Microbiol. 2013 Mar 04;13:52 - PubMed
  8. J Microbiol Methods. 2006 May;65(2):278-93 - PubMed
  9. Proc Natl Acad Sci U S A. 2015 May 26;112(21):E2813-9 - PubMed
  10. Appl Environ Microbiol. 1993 Aug;59(8):2425-9 - PubMed
  11. Appl Environ Microbiol. 2006 Sep;72(9):6004-11 - PubMed
  12. Bull World Health Organ. 1980;58(4):663-4 - PubMed
  13. J Appl Microbiol. 2014 Nov;117(5):1312-27 - PubMed
  14. J Infect. 2007 Mar;54(3):e111-4 - PubMed
  15. Front Microbiol. 2015 May 18;6:432 - PubMed
  16. J Water Health. 2011 Dec;9(4):680-94 - PubMed
  17. J Microbiol Methods. 2007 Feb;68(2):254-9 - PubMed
  18. Appl Environ Microbiol. 2011 Aug;77(15):5384-93 - PubMed
  19. Appl Environ Microbiol. 1994 May;60(5):1565-71 - PubMed
  20. J Fish Dis. 2011 Sep;34(9):643-61 - PubMed
  21. Lett Appl Microbiol. 2006 Aug;43(2):119-24 - PubMed
  22. FEMS Microbiol Lett. 1995 Mar 15;127(1-2):111-5 - PubMed
  23. Risk Anal. 2015 Sep;35(9):1717-29 - PubMed
  24. ISME J. 2009 Sep;3(9):1082-92 - PubMed
  25. Mol Biol Evol. 2013 Dec;30(12):2725-9 - PubMed
  26. PLoS Pathog. 2014 Apr 03;10(4):e1003967 - PubMed
  27. Microbiol Mol Biol Rev. 2004 Sep;68(3):403-31, table of contents - PubMed
  28. Microb Ecol. 2012 Jan;63(1):20-31 - PubMed
  29. Front Microbiol. 2016 Jan 26;6:1438 - PubMed
  30. ISME J. 2012 Feb;6(2):298-308 - PubMed
  31. Biochem Mol Biol Educ. 2011 Mar-Apr;39(2):145-54 - PubMed
  32. Genome Res. 2011 Mar;21(3):494-504 - PubMed
  33. Open Biol. 2013 Feb 13;3(2):120181 - PubMed
  34. Bull World Health Organ. 2012 Mar 1;90(3):209-218A - PubMed
  35. Environ Microbiol Rep. 2012 Aug 1;4(4):381-389 - PubMed
  36. Appl Environ Microbiol. 2004 Jul;70(7):4103-10 - PubMed
  37. Front Microbiol. 2014 Feb 11;5:38 - PubMed
  38. Diagn Microbiol Infect Dis. 2006 Jan;54(1):1-6 - PubMed
  39. Environ Res. 2007 Mar;103(3):390-6 - PubMed
  40. Appl Environ Microbiol. 2004 Jan;70(1):498-507 - PubMed
  41. Clin Microbiol Rev. 2002 Oct;15(4):757-70 - PubMed
  42. Can Vet J. 2000 Feb;41(2):105-16 - PubMed
  43. Euro Surveill. 2006 Aug 03;11(8):E060803.2 - PubMed
  44. Infect Immun. 2000 Mar;68(3):1507-13 - PubMed
  45. Antonie Van Leeuwenhoek. 2010 Oct;98(3):279-90 - PubMed
  46. Osong Public Health Res Perspect. 2011 Jun;2(1):51-8 - PubMed
  47. Appl Environ Microbiol. 2000 Aug;66(8):3550-5 - PubMed
  48. Nat Methods. 2010 May;7(5):335-6 - PubMed
  49. Environ Microbiol. 2008 Jan;10(1):57-64 - PubMed
  50. Emerg Infect Dis. 2005 Jan;11(1):129-31 - PubMed
  51. Appl Environ Microbiol. 1989 Aug;55(8):2073-8 - PubMed
  52. Curr Opin Microbiol. 2016 Apr;30:1-7 - PubMed
  53. J Mol Biol. 1990 Oct 5;215(3):403-10 - PubMed
  54. Int J Infect Dis. 2011 Mar;15(3):e157-66 - PubMed
  55. Environ Microbiol Rep. 2010 Feb;2(1):7-18 - PubMed
  56. J Infect Dis. 1996 May;173(5):1176-83 - PubMed
  57. Appl Environ Microbiol. 2006 Sep;72(9):6424-8 - PubMed
  58. Microbes Infect. 2000 Feb;2(2):177-88 - PubMed
  59. Bull World Health Organ. 1980;58(4):665-9 - PubMed
  60. Science. 2015 Jan 2;347(6217):63-7 - PubMed
  61. Int J Syst Evol Microbiol. 2001 Jul;51(Pt 4):1383-8 - PubMed
  62. Water Res. 2013 Oct 1;47(15):5783-93 - PubMed
  63. Euro Surveill. 2006 Nov 30;11(11):E061130.2 - PubMed
  64. Curr Protoc Bioinformatics. 2011 Dec;Chapter 10:Unit 10.7. - PubMed
  65. Epidemiology. 2008 Nov;19(6):829-37 - PubMed
  66. Mar Pollut Bull. 2011 Dec;62(12 ):2869-75 - PubMed
  67. Bioinformatics. 2010 Oct 1;26(19):2460-1 - PubMed
  68. Appl Environ Microbiol. 2004 Sep;70(9):5469-76 - PubMed
  69. Nat Rev Microbiol. 2009 Oct;7(10):693-702 - PubMed
  70. Microb Ecol. 2012 Apr;63(3):543-51 - PubMed
  71. MMWR Morb Mortal Wkly Rep. 1998 Jun 12;47(22):457-62 - PubMed
  72. Vie Milieu Paris. 2008;58(2):175-184 - PubMed
  73. Environ Microbiol. 2015 Apr;17(4):1065-80 - PubMed
  74. Environ Microbiol Rep. 2012 Oct;4(5):548-55 - PubMed
  75. Dis Aquat Organ. 2000 Mar 14;40(2):101-7 - PubMed
  76. Appl Environ Microbiol. 2005 Oct;71(10):5702-9 - PubMed
  77. ISME J. 2012 Jan;6(1):21-30 - PubMed
  78. Trans R Soc Trop Med Hyg. 1988;82(6):914-7 - PubMed
  79. Emerg Infect Dis. 2013 Mar;19(3):464-7 - PubMed
  80. FEMS Microbiol Ecol. 2007 Jun;60(3):411-8 - PubMed
  81. Epidemiology. 2008 Jan;19(1):103-10 - PubMed
  82. Appl Environ Microbiol. 2005 Aug;71(8):4645-54 - PubMed

Publication Types