Display options
Share it on

Front Microbiol. 2016 Apr 20;7:525. doi: 10.3389/fmicb.2016.00525. eCollection 2016.

Belowground Response to Drought in a Tropical Forest Soil. I. Changes in Microbial Functional Potential and Metabolism.

Frontiers in microbiology

Nicholas J Bouskill, Tana E Wood, Richard Baran, Zaw Ye, Benjamin P Bowen, HsiaoChien Lim, Jizhong Zhou, Joy D Van Nostrand, Peter Nico, Trent R Northen, Whendee L Silver, Eoin L Brodie

Affiliations

  1. Earth Sciences Division, Ecology Department, Lawrence Berkeley National Laboratory Berkeley, CA, USA.
  2. International Institute of Tropical Forestry, USDA Forest ServiceRio Piedras, PR, USA; Fundación Puertorriqueña de ConservaciónSan Juan, PR, USA.
  3. Life Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA.
  4. Earth Sciences Division, Ecology Department, Lawrence Berkeley National LaboratoryBerkeley, CA, USA; Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of OklahomaNorman, OK, USA; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua UniversityBeijing, China.
  5. Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma Norman, OK, USA.
  6. Department of Environmental Science, Policy and Management, University of California-Berkeley Berkeley, CA, USA.
  7. Earth Sciences Division, Ecology Department, Lawrence Berkeley National LaboratoryBerkeley, CA, USA; Department of Environmental Science, Policy and Management, University of California-BerkeleyBerkeley, CA, USA.

PMID: 27148214 PMCID: PMC4837414 DOI: 10.3389/fmicb.2016.00525

Abstract

Global climate models predict a future of increased severity of drought in many tropical forests. Soil microbes are central to the balance of these systems as sources or sinks of atmospheric carbon (C), yet how they respond metabolically to drought is not well-understood. We simulated drought in the typically aseasonal Luquillo Experimental Forest, Puerto Rico, by intercepting precipitation falling through the forest canopy. This approach reduced soil moisture by 13% and water potential by 0.14 MPa (from -0.2 to -0.34). Previous results from this experiment have demonstrated that the diversity and composition of these soil microbial communities are sensitive to even small changes in soil water. Here, we show prolonged drought significantly alters the functional potential of the community and provokes a clear osmotic stress response, including the production of compatible solutes that increase intracellular C demand. Subsequently, a microbial population emerges with a greater capacity for extracellular enzyme production targeting macromolecular carbon. Significantly, some of these drought-induced functional shifts in the soil microbiota are attenuated by prior exposure to a short-term drought suggesting that acclimation may occur despite a lack of longer-term drought history.

Keywords: drought; functional gene microarray; microbial ecology; osmolytes; tropical forests

References

  1. Ecology. 2012 Aug;93(8):1867-79 - PubMed
  2. FEMS Microbiol Rev. 2000 Jul;24(3):263-90 - PubMed
  3. Proc Natl Acad Sci U S A. 2008 Aug 12;105 Suppl 1:11512-9 - PubMed
  4. Science. 2011 Aug 19;333(6045):988-93 - PubMed
  5. Nat Rev Microbiol. 2010 Nov;8(11):779-90 - PubMed
  6. Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):10931-6 - PubMed
  7. ISME J. 2013 Nov;7(11):2178-91 - PubMed
  8. Antonie Van Leeuwenhoek. 2009 Feb;95(2):121-33 - PubMed
  9. Appl Environ Microbiol. 1989 Jun;55(6):1635-7 - PubMed
  10. Front Microbiol. 2013 Nov 12;4:333 - PubMed
  11. Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14369-72 - PubMed
  12. ISME J. 2013 Jun;7(6):1187-99 - PubMed
  13. PLoS Genet. 2014 Sep 25;10(9):e1004556 - PubMed
  14. Ecology. 2012 Apr;93(4):930-8 - PubMed
  15. Ecol Lett. 2014 Feb;17 (2):155-64 - PubMed
  16. ISME J. 2014 Jan;8(1):19-30 - PubMed
  17. Ecology. 2010 Sep;91(9):2604-12 - PubMed
  18. Microb Ecol. 2015 May;69(4):843-54 - PubMed
  19. Appl Environ Microbiol. 2011 Dec;77(23):8241-8 - PubMed
  20. Environ Microbiol. 2010 Dec;12(12):3137-49 - PubMed
  21. Ecology. 2014 Jan;95(1):110-22 - PubMed
  22. Microbiol Rev. 1989 Mar;53(1):121-47 - PubMed
  23. Cell. 2009 Oct 30;139(3):485-98 - PubMed
  24. Arch Microbiol. 1998 Oct;170(5):319-30 - PubMed
  25. Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12581-6 - PubMed
  26. Nature. 2011 Oct 05;478(7367):49-56 - PubMed
  27. Microbiol Rev. 1994 Dec;58(4):755-805 - PubMed
  28. Microb Ecol. 2006 Aug;52(2):226-38 - PubMed
  29. Appl Environ Microbiol. 1995 Jan;61(1):218-21 - PubMed
  30. Ecology. 2007 Jun;88(6):1386-94 - PubMed
  31. Proc Natl Acad Sci U S A. 2009 Feb 3;106(5):1374-9 - PubMed
  32. Nature. 2011 Jan 6;469(7328):93-6 - PubMed
  33. Ecology. 2013 Mar;94(3):714-25 - PubMed
  34. MBio. 2012 Feb 21;3(1):null - PubMed
  35. Microb Ecol. 2009 Nov;58(4):827-42 - PubMed
  36. Nature. 2014 Nov 27;515(7528):505-11 - PubMed
  37. ISME J. 2011 Sep;5(9):1540-8 - PubMed
  38. Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18634-9 - PubMed
  39. Ecol Lett. 2010 Sep;13(9):1073-84 - PubMed
  40. Proc Natl Acad Sci U S A. 2007 Oct 30;104(44):17430-4 - PubMed
  41. ISME J. 2013 Feb;7(2):384-94 - PubMed
  42. Proc Natl Acad Sci U S A. 2013 Nov 5;110(45):18110-5 - PubMed
  43. Proc Natl Acad Sci U S A. 2008 May 6;105(18):6668-72 - PubMed
  44. Science. 2008 May 23;320(5879):1039-43 - PubMed
  45. Appl Environ Microbiol. 2013 Mar;79(5):1545-54 - PubMed
  46. Appl Environ Microbiol. 2005 Nov;71(11):6998-7007 - PubMed
  47. Proc Biol Sci. 2002 May 7;269(1494):937-42 - PubMed
  48. ISME J. 2012 Feb;6(2):451-60 - PubMed
  49. Nature. 2009 Jul 9;460(7252):220-4 - PubMed
  50. Nat Commun. 2014;5:2947 - PubMed
  51. J Gen Microbiol. 1991 Apr;137(4):745-50 - PubMed
  52. Ecol Lett. 2012 Sep;15(9):1058-70 - PubMed
  53. ISME J. 2008 Aug;2(8):805-14 - PubMed

Publication Types