Display options
Share it on

Front Microbiol. 2016 Apr 22;7:528. doi: 10.3389/fmicb.2016.00528. eCollection 2016.

Transmission of Foot-and-Mouth Disease SAT2 Viruses at the Wildlife-Livestock Interface of Two Major Transfrontier Conservation Areas in Southern Africa.

Frontiers in microbiology

Barbara P Brito, Ferran Jori, Rahana Dwarka, Francois F Maree, Livio Heath, Andres M Perez

Affiliations

  1. Foreign Animal Disease Research Unit, Plum Island Animal Disease Center, United States Department of Agriculture/Agricultural Research ServiceGreenport, NY, USA; Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de ChileSantiago, Chile.
  2. Unité Propre de Recherche Animal et Gestion Intégrée des Risques, French Agricultural Research Center for International Development (CIRAD)Montpellier, France; Department of Zoology and Entomology, University of PretoriaPretoria, South Africa; Department of Animal Science and Production, Botswana College of AgricultureGaborone, Botswana.
  3. Transboundary Animal Diseases Programme, Ondesterpoort Veterinary Institute Onderstepoort, South Africa.
  4. Department of Zoology and Entomology, University of PretoriaPretoria, South Africa; Transboundary Animal Diseases Programme, Ondesterpoort Veterinary InstituteOnderstepoort, South Africa.
  5. Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota Minneapolis, MN, USA.

PMID: 27148217 PMCID: PMC4840674 DOI: 10.3389/fmicb.2016.00528

Abstract

Over a decade ago, foot-and-mouth disease (FMD) re-emerged in Southern Africa specifically in beef exporting countries that had successfully maintained disease-free areas in the past. FMD virus (FMDV) serotype SAT2 has been responsible for a majority of these outbreaks. Epidemiological studies have revealed the importance of the African buffalo as the major wildlife FMD reservoir in the region. We used phylogeographic analysis to study dynamics of FMD transmission between buffalo and domestic cattle at the interface of the major wildlife protected areas in the region currently encompassing two largest Transfrontier conservation areas: Kavango-Zambezi (KAZA) and Great Limpopo (GL). Results of this study showed restricted local occurrence of each FMDV SAT2 topotypes I, II, and III, with occasional virus migration from KAZA to GL. Origins of outbreaks in livestock are frequently attributed to wild buffalo, but our results suggest that transmission from cattle to buffalo also occurs. We used coalescent Bayesian skyline analysis to study the genetic variation of the virus in cattle and buffalo, and discussed the association of these genetic changes in the virus and relevant epidemiological events that occurred in this area. Our results show that the genetic diversity of FMDV SAT2 has decreased in buffalo and cattle population during the last decade. This study contributes to understand the major dynamics of transmission and genetic variation of FMDV SAT2 in Southern Africa, which will could ultimately help in designing efficient strategies for the control of FMD at a local and regional level.

Keywords: SAT2; Southern Africa; foot and mouth disease; molecular epidemiology; phylogeography

References

  1. Virus Res. 2003 Jan;91(1):65-80 - PubMed
  2. Virus Res. 2003 Jan;91(1):145-61 - PubMed
  3. Rev Sci Tech. 2004 Dec;23(3):783-90 - PubMed
  4. Transbound Emerg Dis. 2013 Dec;60(6):507-15 - PubMed
  5. Front Vet Sci. 2015 Nov 25;2:63 - PubMed
  6. Transbound Emerg Dis. 2016 Feb;63(1):e58-70 - PubMed
  7. Mol Biol Evol. 2012 Jun;29(6):1695-701 - PubMed
  8. Epidemiol Infect. 2013 Jul;141(7):1522-35 - PubMed
  9. Epidemiol Infect. 2000 Jun;124(3):591-8 - PubMed
  10. Ann N Y Acad Sci. 2002 Oct;969:187-90 - PubMed
  11. Curr Top Microbiol Immunol. 2005;288:43-70 - PubMed
  12. Prev Vet Med. 2011 Jul 1;100(3-4):210-20 - PubMed
  13. Vet Rec. 2007 Feb 17;160(7):238-41 - PubMed
  14. Mol Biol Evol. 2012 Aug;29(8):1969-73 - PubMed
  15. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 - PubMed
  16. Transbound Emerg Dis. 2009 Mar;56(1-2):18-30 - PubMed
  17. Comp Immunol Microbiol Infect Dis. 2013 May;36(3):295-302 - PubMed
  18. Rev Sci Tech. 2005 Dec;24(3):981-93 - PubMed
  19. J Virol. 1987 May;61(5):1621-9 - PubMed
  20. Rev Sci Tech. 2002 Dec;21(3):751-64 - PubMed
  21. J Gen Virol. 2003 Jun;84(Pt 6):1595-606 - PubMed
  22. BMC Evol Biol. 2014 Nov 01;14:203 - PubMed
  23. Transbound Emerg Dis. 2016 Apr;63(2):136-51 - PubMed
  24. Vet J. 2004 Jul;168(1):93-9 - PubMed
  25. Prev Vet Med. 2013 Nov 1;112(3-4):161-73 - PubMed
  26. Epidemics. 2015 Mar;10:88-92 - PubMed
  27. MBio. 2013 Oct 22;4(5):e00591-13 - PubMed
  28. Ann N Y Acad Sci. 2002 Oct;969:191-200 - PubMed
  29. Prev Vet Med. 2016 Apr 1;126:19-29 - PubMed
  30. Onderstepoort J Vet Res. 2014 Apr 23;81(2):E1-6 - PubMed
  31. Prev Vet Med. 2012 Jan 1;103(1):16-21 - PubMed
  32. Rev Sci Tech. 1992 Dec;11(4):1097-107 - PubMed
  33. PLoS Comput Biol. 2009 Sep;5(9):e1000520 - PubMed
  34. Bioinformatics. 2011 Oct 15;27(20):2910-2 - PubMed
  35. Arch Virol. 2001 Aug;146(8):1537-51 - PubMed
  36. Rev Sci Tech. 2009 Dec;28(3):917-31 - PubMed
  37. Parasit Vectors. 2015 Jan 15;8:26 - PubMed
  38. J Virol. 2005 May;79(10):6487-504 - PubMed
  39. Arch Virol. 2006 Feb;151(2):285-98 - PubMed
  40. Transbound Emerg Dis. 2013 Dec;60(6):492-506 - PubMed
  41. Prev Vet Med. 2000 Mar 29;44(1-2):43-60 - PubMed
  42. Vet Rec. 1972 Oct 7;91(15):354-9 - PubMed
  43. Onderstepoort J Vet Res. 1998 Mar;65(1):37-47 - PubMed
  44. Onderstepoort J Vet Res. 2008 Dec;75(4):267-77 - PubMed

Publication Types