Display options
Share it on

Front Microbiol. 2016 Apr 19;7:533. doi: 10.3389/fmicb.2016.00533. eCollection 2016.

Tyrosine 601 of Bacillus subtilis DnaK Undergoes Phosphorylation and Is Crucial for Chaperone Activity and Heat Shock Survival.

Frontiers in microbiology

Lei Shi, Vaishnavi Ravikumar, Abderahmane Derouiche, Boris Macek, Ivan Mijakovic

Affiliations

  1. Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology Gothenburg, Sweden.
  2. Proteome Center Tübingen, Interfaculty Institute for Cell Biology, University of Tübingen Tübingen, Germany.

PMID: 27148221 PMCID: PMC4835898 DOI: 10.3389/fmicb.2016.00533

Abstract

In order to screen for cellular substrates of the Bacillus subtilis BY-kinase PtkA, and its cognate phosphotyrosine-protein phosphatase PtpZ, we performed a triple Stable Isotope Labeling by Amino acids in Cell culture-based quantitative phosphoproteome analysis. Detected tyrosine phosphorylation sites for which the phosphorylation level decreased in the ΔptkA strain and increased in the ΔptpZ strain, compared to the wild type (WT), were considered as potential substrates of PtkA/PtpZ. One of those sites was the residue tyrosine 601 of the molecular chaperone DnaK. We confirmed that DnaK is a substrate of PtkA and PtpZ by in vitro phosphorylation and dephosphorylation assays. In vitro, DnaK Y601F mutant exhibited impaired interaction with its co-chaperones DnaJ and GrpE, along with diminished capacity to hydrolyze ATP and assist the re-folding of denatured proteins. In vivo, loss of DnaK phosphorylation in the mutant strain dnaK Y601F, or in the strain overexpressing the phosphatase PtpZ, led to diminished survival upon heat shock, consistent with the in vitro results. The decreased survival of the mutant dnaK Y601F at an elevated temperature could be rescued by complementing with the WT dnaK allele expressed ectopically. We concluded that the residue tyrosine 601 of DnaK can be phosphorylated and dephosphorylated by PtkA and PtpZ, respectively. Furthermore, Y601 is important for DnaK chaperone activity and heat shock survival of B. subtilis.

Keywords: SILAC; bacterial protein-tyrosine kinases; molecular chaperones; protein folding; protein phosphorylation; quantitative phosphoproteomics

References

  1. Genes Dev. 2014 Aug 1;28(15):1710-20 - PubMed
  2. Proc Natl Acad Sci U S A. 2009 May 26;106(21):8471-6 - PubMed
  3. Nucleic Acids Res. 2016 Jan 4;44(D1):D447-56 - PubMed
  4. Front Microbiol. 2014 Oct 22;5:538 - PubMed
  5. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9513-7 - PubMed
  6. J Bacteriol. 2005 May;187(10):3384-90 - PubMed
  7. J Biol Chem. 2011 Sep 9;286(36):31821-9 - PubMed
  8. J Biol Chem. 2012 Feb 17;287(8):6044-52 - PubMed
  9. J Proteome Res. 2006 Apr;5(4):988-94 - PubMed
  10. Cell. 1998 Feb 6;92(3):351-66 - PubMed
  11. Nature. 1992 May 14;357(6374):167-9 - PubMed
  12. J Biol Chem. 2014 Feb 28;289(9):6110-9 - PubMed
  13. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8648-52 - PubMed
  14. Mol Cell Proteomics. 2013 Nov;12(11):3420-30 - PubMed
  15. Nucleic Acids Res. 2013 Nov;41(20):9371-81 - PubMed
  16. Mol Cell Proteomics. 2007 Apr;6(4):697-707 - PubMed
  17. J Bacteriol. 2001 Oct;183(19):5482-90 - PubMed
  18. Proc Natl Acad Sci U S A. 1983 Nov;80(21):6431-5 - PubMed
  19. Microbiology. 2014 Apr;160(Pt 4):682-91 - PubMed
  20. J Bacteriol. 1996 Feb;178(3):931-5 - PubMed
  21. Proteomics. 2007 Oct;7(19):3509-26 - PubMed
  22. Mol Microbiol. 2002 Oct;46(1):25-36 - PubMed
  23. EMBO J. 2003 Sep 15;22(18):4709-18 - PubMed
  24. Mol Cell Proteomics. 2008 Feb;7(2):299-307 - PubMed
  25. Mol Cell Proteomics. 2005 Dec;4(12):2010-21 - PubMed
  26. J Proteome Res. 2011 Apr 1;10(4):1794-805 - PubMed
  27. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5452-7 - PubMed
  28. Nucleic Acids Res. 2006 Mar 20;34(5):1588-96 - PubMed
  29. J Mol Microbiol Biotechnol. 2009;17(2):83-9 - PubMed
  30. J Proteome Res. 2010 Jul 2;9(7):3638-46 - PubMed
  31. Mol Microbiol. 2015 Sep;97(6):1195-208 - PubMed
  32. Front Microbiol. 2015 Jan 23;6:18 - PubMed
  33. Nat Protoc. 2009;4(5):698-705 - PubMed
  34. Nat Struct Biol. 2001 Mar;8(3):254-7 - PubMed
  35. Mol Cell Proteomics. 2012 May;11(5):160-70 - PubMed
  36. Front Microbiol. 2014 Sep 17;5:495 - PubMed
  37. Mol Microbiol. 2010 Jul;77(2):287-99 - PubMed
  38. J Proteome Res. 2013 Jun 7;12(6):2611-21 - PubMed
  39. Methods Mol Biol. 2001;95:57-64 - PubMed
  40. EMBO J. 1993 Nov;12(11):4137-44 - PubMed
  41. Proc Natl Acad Sci U S A. 2011 Nov 22;108(47):18966-71 - PubMed
  42. Mol Cell Proteomics. 2014 Aug;13(8):1965-78 - PubMed
  43. Genome Biol Evol. 2014 Apr;6(4):800-17 - PubMed
  44. J Bacteriol. 2001 Jun;183(11):3391-8 - PubMed
  45. Eur J Biochem. 1987 Nov 2;168(3):621-7 - PubMed
  46. Cell Mol Life Sci. 2005 Mar;62(6):670-84 - PubMed

Publication Types