Display options
Share it on

Front Plant Sci. 2016 Apr 18;7:461. doi: 10.3389/fpls.2016.00461. eCollection 2016.

Foliar Abscisic Acid-To-Ethylene Accumulation and Response Regulate Shoot Growth Sensitivity to Mild Drought in Wheat.

Frontiers in plant science

Ravi Valluru, William J Davies, Matthew P Reynolds, Ian C Dodd

Affiliations

  1. Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT)El Batan, Mexico; Plant Biology Department, Lancaster Environmental Center, Lancaster UniversityLancaster, UK.
  2. Plant Biology Department, Lancaster Environmental Center, Lancaster University Lancaster, UK.
  3. Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT) El Batan, Mexico.

PMID: 27148292 PMCID: PMC4834443 DOI: 10.3389/fpls.2016.00461

Abstract

Although, plant hormones play an important role in adjusting growth in response to environmental perturbation, the relative contributions of abscisic acid (ABA) and ethylene remain elusive. Using six spring wheat genotypes differing for stress tolerance, we show that young seedlings of the drought-tolerant (DT) group maintained or increased shoot dry weight (SDW) while the drought-susceptible (DS) group decreased SDW in response to mild drought. Both the DT and DS groups increased endogenous ABA and ethylene concentrations under mild drought compared to control. The DT and DS groups exhibited different SDW response trends, whereby the DS group decreased while the DT group increased SDW, to increased concentrations of ABA and ethylene under mild drought, although both groups decreased ABA/ethylene ratio under mild drought albeit at different levels. We concluded that SDW of the DT and DS groups might be distinctly regulated by specific ABA:ethylene ratio. Further, a foliar-spray of low concentrations (0.1 μM) of ABA increased shoot relative growth rate (RGR) in the DS group while ACC (1-aminocyclopropane-1-carboxylic acid, ethylene precursor) spray increased RGR in both groups compared to control. Furthermore, the DT group accumulated a significantly higher galactose while a significantly lower maltose in the shoot compared to the DS group. Taken all together, these results suggest an impact of ABA, ethylene, and ABA:ethylene ratio on SDW of wheat seedlings that may partly underlie a genotypic variability of different shoot growth sensitivities to drought among crop species under field conditions. We propose that phenotyping based on hormone accumulation, response and hormonal ratio would be a viable, rapid, and an early-stage selection tool aiding genotype selection for stress tolerance.

Keywords: abscisic acid; drought; ethylene; growth sensitivity; hormonal ratio; mild drought

References

  1. J Exp Bot. 2010 Aug;61(13):3499-507 - PubMed
  2. Symp Soc Exp Biol. 1957;11:118-30 - PubMed
  3. Plant Biol (Stuttg). 2008 Sep;10(5):534-8 - PubMed
  4. Plant Physiol. 2013 Aug;162(4):1768-79 - PubMed
  5. New Phytol. 2015 Mar;205(4):1431-6 - PubMed
  6. J Exp Bot. 2008;59(3):619-31 - PubMed
  7. Theor Appl Genet. 2015 Feb;128(2):353-63 - PubMed
  8. Plant Cell Environ. 2010 Aug 1;33(8):1256-67 - PubMed
  9. Plant Physiol. 2002 Mar;128(3):962-9 - PubMed
  10. AoB Plants. 2014 Jul 14;6:null - PubMed
  11. Planta. 1990 Apr;181(1):27-34 - PubMed
  12. Proc Natl Acad Sci U S A. 1966 Feb;55(2):262-9 - PubMed
  13. Ann Bot. 2002 Jul;90(1):37-42 - PubMed
  14. New Phytol. 2013 Jan;197(1):6-8 - PubMed
  15. Plant Cell Environ. 2014 Nov;37(11):2577-86 - PubMed
  16. Genes Genet Syst. 2012;87(1):9-18 - PubMed
  17. J Exp Bot. 2012 May;63(9):3499-509 - PubMed
  18. Trends Plant Sci. 2006 Apr;11(4):176-83 - PubMed
  19. Physiol Plant. 2010 Dec;140(4):321-33 - PubMed
  20. Plant Physiol. 2010 Nov;154(3):1254-71 - PubMed
  21. Planta. 1970 Dec;90(4):333-9 - PubMed
  22. Plant Cell Rep. 2010 Aug;29(8):927-33 - PubMed
  23. Plant Cell. 1990 Jun;2(6):513-23 - PubMed
  24. J Exp Bot. 2014 Nov;65(20):5823-34 - PubMed
  25. J Exp Bot. 2015 Jan;66(1):225-44 - PubMed
  26. Plant Cell. 2014 Oct;26(10):3984-98 - PubMed
  27. Arabidopsis Book. 2002;1:e0058 - PubMed
  28. BMC Syst Biol. 2012 Nov 25;6:146 - PubMed
  29. New Phytol. 2013 Jan;197(1):65-72 - PubMed
  30. New Phytol. 2014 Mar;201(4):1086-95 - PubMed
  31. J Exp Bot. 2010 Aug;61(13):3543-51 - PubMed
  32. Nat Biotechnol. 2011 Mar;29(3):212-4 - PubMed
  33. J Exp Bot. 2006;57(1):149-60 - PubMed
  34. J Exp Bot. 2011 Oct;62(14):4955-63 - PubMed
  35. Plant J. 2013 May;74(3):448-57 - PubMed
  36. Ann Bot. 2015 Aug;116(2):225-36 - PubMed
  37. Plant Signal Behav. 2012 Jul;7(7):767-70 - PubMed
  38. Curr Opin Plant Biol. 2011 Jun;14(3):290-5 - PubMed
  39. J Exp Bot. 2002 Jan;53(366):33-7 - PubMed
  40. Plant Cell. 2013 Mar;25(3):1029-39 - PubMed
  41. Trends Plant Sci. 2011 Apr;16(4):178-82 - PubMed
  42. J Exp Bot. 2008;59(8):2221-32 - PubMed
  43. PLoS One. 2013 Jul 09;8(7):e65800 - PubMed
  44. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2756-61 - PubMed
  45. Ann Bot. 2008 May;101(7):1007-15 - PubMed
  46. Plant Biotechnol J. 2014 Aug;12(6):685-93 - PubMed
  47. Plant Physiol. 2005 Aug;138(4):2337-43 - PubMed
  48. Plant Physiol. 2011 Jun;156(2):647-62 - PubMed
  49. Plant Sci. 2013 Dec;213:123-7 - PubMed
  50. Biochim Biophys Acta. 1956 Apr;20(1):17-22 - PubMed
  51. Plant Physiol. 2014 Apr 7;165(2):519-527 - PubMed
  52. New Phytol. 2008;178(4):719-39 - PubMed
  53. Plant Physiol. 2014 Apr;164(4):1707-17 - PubMed
  54. Plant Physiol. 2013 May;162(1):319-32 - PubMed
  55. Plant Physiol. 2007 Jan;143(1):68-77 - PubMed
  56. Plant Mol Biol. 2009 Sep;71(1-2):61-80 - PubMed
  57. Cell. 1996 Apr 19;85(2):183-94 - PubMed
  58. BMC Plant Biol. 2011 Apr 22;11:70 - PubMed
  59. Plant Physiol. 2014 Apr;164(4):1628-35 - PubMed
  60. Plant Cell. 2013 Jan;25(1):324-41 - PubMed
  61. Plant Physiol. 2009 Apr;149(4):2000-12 - PubMed
  62. Ann Bot. 2002 Jun;89 Spec No:925-40 - PubMed
  63. Cell. 1993 Feb 12;72(3):427-41 - PubMed
  64. J Exp Bot. 2014 Oct;65(18):5291-304 - PubMed
  65. BMC Plant Biol. 2004 Dec 30;4:21 - PubMed
  66. Plant Physiol. 2011 Oct;157(2):718-29 - PubMed
  67. Plant Physiol. 1968 Jul;43(7):1069-74 - PubMed
  68. Ann Bot. 2010 May;105(5):661-76 - PubMed
  69. Ann Bot. 2002 Jun;89 Spec No:907-16 - PubMed
  70. Plant Cell Environ. 2013 Oct;36(10 ):1850-9 - PubMed
  71. J Exp Bot. 2015 Feb;66(3):813-25 - PubMed
  72. Plant Physiol. 2010 Jan;152(1):226-44 - PubMed
  73. Theor Appl Genet. 2015 Mar;128(3):453-64 - PubMed
  74. Planta. 1977 Jan;134(2):183-9 - PubMed
  75. Tree Physiol. 2012 Mar;32(3):249-61 - PubMed
  76. Annu Rev Plant Biol. 2008;59:225-51 - PubMed
  77. Plant Physiol. 2014 Apr;164(4):1718-30 - PubMed
  78. New Phytol. 2006;170(3):459-66 - PubMed
  79. Curr Biol. 2002 Oct 29;12(21):1840-5 - PubMed
  80. New Phytol. 2009;181(3):651-61 - PubMed
  81. J Exp Bot. 2008;59(15):4119-31 - PubMed

Publication Types