Display options
Share it on

Front Plant Sci. 2016 Apr 12;7:481. doi: 10.3389/fpls.2016.00481. eCollection 2016.

RNA-seq Transcriptome Analysis of Panax japonicus, and Its Comparison with Other Panax Species to Identify Potential Genes Involved in the Saponins Biosynthesis.

Frontiers in plant science

Amit Rai, Mami Yamazaki, Hiroki Takahashi, Michimi Nakamura, Mareshige Kojoma, Hideyuki Suzuki, Kazuki Saito

Affiliations

  1. Graduate School of Pharmaceutical Sciences, Chiba University Chiba, Japan.
  2. Medical Mycology Research Center, Chiba University Chiba, Japan.
  3. Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido Hokkaido, Japan.
  4. Kazusa DNA Research Institute Chiba, Japan.

PMID: 27148308 PMCID: PMC4828455 DOI: 10.3389/fpls.2016.00481

Abstract

The Panax genus has been a source of natural medicine, benefitting human health over the ages, among which the Panax japonicus represents an important species. Our understanding of several key pathways and enzymes involved in the biosynthesis of ginsenosides, a pharmacologically active class of metabolites and a major chemical constituents of the rhizome extracts from the Panax species, are limited. Limited genomic information, and lack of studies on comparative transcriptomics across the Panax species have restricted our understanding of the biosynthetic mechanisms of these and many other important classes of phytochemicals. Herein, we describe Illumina based RNA sequencing analysis to characterize the transcriptome and expression profiles of genes expressed in the five tissues of P. japonicus, and its comparison with other Panax species. RNA sequencing and de novo transcriptome assembly for P. japonicus resulted in a total of 135,235 unigenes with 78,794 (58.24%) unigenes being annotated using NCBI-nr database. Transcriptome profiling, and gene ontology enrichment analysis for five tissues of P. japonicus showed that although overall processes were evenly conserved across all tissues. However, each tissue was characterized by several unique unigenes with the leaves showing the most unique unigenes among the tissues studied. A comparative analysis of the P. japonicus transcriptome assembly with publically available transcripts from other Panax species, namely, P. ginseng, P. notoginseng, and P. quinquefolius also displayed high sequence similarity across all Panax species, with P. japonicus showing highest similarity with P. ginseng. Annotation of P. japonicus transcriptome resulted in the identification of putative genes encoding all enzymes from the triterpene backbone biosynthetic pathways, and identified 24 and 48 unigenes annotated as cytochrome P450 (CYP) and glycosyltransferases (GT), respectively. These CYPs and GTs annotated unigenes were conserved across all Panax species and co-expressed with other the transcripts involved in the triterpenoid backbone biosynthesis pathways. Unigenes identified in this study represent strong candidates for being involved in the triterpenoid saponins biosynthesis, and can serve as a basis for future validation studies.

Keywords: Panax japonicas; RNA-seq; comparative transcriptomics analysis; cytochrome P450; triterpenoid saponins

References

  1. Hum Genomics. 2009 Oct;4(1):59-65 - PubMed
  2. J Korean Med Sci. 2001 Dec;16 Suppl:S28-37 - PubMed
  3. Planta Med. 2003 Jul;69(7):647-53 - PubMed
  4. Curr Opin Plant Biol. 2013 Jun;16(3):373-80 - PubMed
  5. PLoS One. 2015 Jun 12;10(6):e0129154 - PubMed
  6. BMC Bioinformatics. 2011 Aug 04;12:323 - PubMed
  7. Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):14204-9 - PubMed
  8. Cell Mol Biol Lett. 2002;7(2A):537-46 - PubMed
  9. J Genet. 2008 Apr;87(1):39-51 - PubMed
  10. Phytochemistry. 2014 Oct;106:7-24 - PubMed
  11. J Ginseng Res. 2011 Nov;35(4):399-412 - PubMed
  12. Carbohydr Polym. 2014 Jan 30;101:386-91 - PubMed
  13. Chem Pharm Bull (Tokyo). 1985 Sep;33(9):3852-8 - PubMed
  14. BMC Complement Altern Med. 2005 Apr 06;5:9 - PubMed
  15. Arabidopsis Book. 2011;9:e0144 - PubMed
  16. BMC Plant Biol. 2008 Nov 27;8:119 - PubMed
  17. J Nat Prod. 2002 Mar;65(3):346-51 - PubMed
  18. Plant Cell Physiol. 2013 May;54(5):645-6 - PubMed
  19. Plant Cell Physiol. 2011 Dec;52(12 ):2062-73 - PubMed
  20. Mol Biol Evol. 2013 Dec;30(12):2725-9 - PubMed
  21. Bioinformatics. 2014 Aug 1;30(15):2114-20 - PubMed
  22. Nat Biotechnol. 2011 May 15;29(7):644-52 - PubMed
  23. FEBS J. 2006 Mar;273(5):948-59 - PubMed
  24. J Ethnopharmacol. 2015 May 26;166:79-85 - PubMed
  25. FEBS Lett. 2005 Aug 15;579(20):4454-8 - PubMed
  26. Planta Med. 2004 Jul;70(7):666-77 - PubMed
  27. J Biol Chem. 2005 Jan 28;280(4):2397-400 - PubMed
  28. Phytochemistry. 2011 Jun;72(8):689-99 - PubMed
  29. Nucleic Acids Res. 2002 Jan 1;30(1):207-10 - PubMed
  30. Chem Pharm Bull (Tokyo). 2013;61(3):344-50 - PubMed
  31. Plant Cell Physiol. 2012 Sep;53(9):1535-45 - PubMed
  32. Eur J Clin Pharmacol. 1999 Oct;55(8):567-75 - PubMed
  33. Genome Biol. 2009;10(3):R25 - PubMed
  34. Appl Microbiol Biotechnol. 2014;98(14):6243-54 - PubMed
  35. Nat Genet. 1996 Sep;14(1):14-5 - PubMed
  36. Plant J. 2011 Apr;66(1):182-93 - PubMed
  37. Plant Cell Physiol. 2013 Dec;54(12):2034-46 - PubMed
  38. Phytochemistry. 2009 Dec;70(17-18):1940-7 - PubMed
  39. Int J Plant Genomics. 2008;2008:619832 - PubMed
  40. Plant Physiol. 2000 Oct;124(2):507-14 - PubMed
  41. Trends Biotechnol. 2005 Jan;23(1):48-55 - PubMed
  42. Theor Appl Genet. 2003 Feb;106(3):411-22 - PubMed
  43. J Ethnopharmacol. 1987 Jan-Feb;19(1):95-101 - PubMed
  44. Lancet Oncol. 2001 Jan;2(1):49-55 - PubMed
  45. Curr Opin Biotechnol. 2016 Feb;37:127-34 - PubMed
  46. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 - PubMed
  47. Nucleic Acids Res. 2014 Jan;42(Database issue):D199-205 - PubMed

Publication Types