Display options
Share it on

Front Genet. 2016 Apr 14;7:44. doi: 10.3389/fgene.2016.00044. eCollection 2016.

Boolean Modeling Reveals the Necessity of Transcriptional Regulation for Bistability in PC12 Cell Differentiation.

Frontiers in genetics

Barbara Offermann, Steffen Knauer, Amit Singh, María L Fernández-Cachón, Martin Klose, Silke Kowar, Hauke Busch, Melanie Boerries

Affiliations

  1. Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg Freiburg, Germany.
  2. Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University FreiburgFreiburg, Germany; German Cancer ConsortiumFreiburg, Germany; German Cancer Research CenterHeidelberg, Germany.

PMID: 27148350 PMCID: PMC4830832 DOI: 10.3389/fgene.2016.00044

Abstract

The nerve growth factor NGF has been shown to cause cell fate decisions toward either differentiation or proliferation depending on the relative activity of downstream pERK, pAKT, or pJNK signaling. However, how these protein signals are translated into and fed back from transcriptional activity to complete cellular differentiation over a time span of hours to days is still an open question. Comparing the time-resolved transcriptome response of NGF- or EGF-stimulated PC12 cells over 24 h in combination with protein and phenotype data we inferred a dynamic Boolean model capturing the temporal sequence of protein signaling, transcriptional response and subsequent autocrine feedback. Network topology was optimized by fitting the model to time-resolved transcriptome data under MEK, PI3K, or JNK inhibition. The integrated model confirmed the parallel use of MAPK/ERK, PI3K/AKT, and JNK/JUN for PC12 cell differentiation. Redundancy of cell signaling is demonstrated from the inhibition of the different MAPK pathways. As suggested in silico and confirmed in vitro, differentiation was substantially suppressed under JNK inhibition, yet delayed only under MEK/ERK inhibition. Most importantly, we found that positive transcriptional feedback induces bistability in the cell fate switch. De novo gene expression was necessary to activate autocrine feedback that caused Urokinase-Type Plasminogen Activator (uPA) Receptor signaling to perpetuate the MAPK activity, finally resulting in the expression of late, differentiation related genes. Thus, the cellular decision toward differentiation depends on the establishment of a transcriptome-induced positive feedback between protein signaling and gene expression thereby constituting a robust control between proliferation and differentiation.

Keywords: Boolean modeling; EGF signaling; NGF signaling; PC12 cells; bistability

References

  1. FEBS Lett. 2007 Jun 26;581(16):3076-80 - PubMed
  2. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 - PubMed
  3. J Cell Physiol. 2004 Dec;201(3):459-69 - PubMed
  4. Cell. 1995 Jan 27;80(2):179-85 - PubMed
  5. PLoS Comput Biol. 2011 Dec;7(12):e1002276 - PubMed
  6. Mol Cell Neurosci. 2003 Sep;24(1):238-49 - PubMed
  7. PLoS Genet. 2012 Sep;8(9):e1002977 - PubMed
  8. Cell. 2011 Mar 18;144(6):886-96 - PubMed
  9. Mol Syst Biol. 2015 Nov 27;11(11):838 - PubMed
  10. BMC Bioinformatics. 2009 May 27;10:161 - PubMed
  11. Genes Dev. 2012 Apr 1;26(7):668-82 - PubMed
  12. J Biol Chem. 2005 Mar 11;280(10 ):9706-18 - PubMed
  13. J Comput Biol. 1999 Fall-Winter;6(3-4):281-97 - PubMed
  14. Biochim Biophys Acta. 2012 Oct;1823(10):1841-6 - PubMed
  15. Nat Cell Biol. 2007 Mar;9(3):324-30 - PubMed
  16. Nat Cell Biol. 2005 Apr;7(4):365-73 - PubMed
  17. Rev Neurosci. 2009;20(2):133-45 - PubMed
  18. J Neurosci Res. 2001 Feb 15;63(4):341-6 - PubMed
  19. J Neurosci Res. 1997 Oct 1;50(1):32-43 - PubMed
  20. Nat Rev Genet. 2012 Jul 18;13(8):552-64 - PubMed
  21. Alcohol Clin Exp Res. 1999 Apr;23(4):644-56 - PubMed
  22. Nature. 2003 Nov 27;426(6965):460-5 - PubMed
  23. Thromb Haemost. 2008 Dec;100(6):1014-20 - PubMed
  24. J Cell Physiol. 2001 May;187(2):155-65 - PubMed
  25. Mol Cell Biol. 2004 Jan;24(1):144-53 - PubMed
  26. Bioinformatics. 2010 May 15;26(10):1378-80 - PubMed
  27. Science. 1987 Sep 4;237(4819):1154-62 - PubMed
  28. Nat Rev Mol Cell Biol. 2011 Feb;12(2):104-17 - PubMed
  29. Biochem J. 2012 Jun 1;444(2):343-55 - PubMed
  30. Neuron. 1992 Dec;9(6):1067-79 - PubMed
  31. J Transl Med. 2014 Aug 07;12:222 - PubMed
  32. J Neurosci. 2013 Oct 2;33(40):15940-51 - PubMed
  33. Brain Res. 1982 Sep 9;247(1):115-9 - PubMed
  34. Can J Physiol Pharmacol. 2008 Jul;86(7):438-48 - PubMed
  35. PLoS One. 2013;8(2):e56690 - PubMed
  36. Cell. 1994 Jun 17;77(6):841-52 - PubMed
  37. Science. 2002 May 31;296(5573):1648-9 - PubMed
  38. Front Mol Neurosci. 2014 Jun 26;7:59 - PubMed
  39. Nat Cell Biol. 2009 Dec;11(12):1458-64 - PubMed
  40. Trends Biochem Sci. 2006 May;31(5):268-75 - PubMed
  41. Cancer Cell. 2008 Jan;13(1):11-22 - PubMed
  42. J Cell Physiol. 2007 Feb;210(2):538-48 - PubMed
  43. Mol Cell. 2012 Jan 27;45(2):196-209 - PubMed
  44. Mol Cell Biol. 1990 May;10(5):1931-9 - PubMed
  45. Mol Cell. 2013 Nov 21;52(4):529-40 - PubMed
  46. J Biol Chem. 2015 Oct 9;290(41):24784-92 - PubMed
  47. J Biol Chem. 2011 Dec 30;286(52):45131-45 - PubMed
  48. Front Physiol. 2012 Sep 18;3:355 - PubMed
  49. Biostatistics. 2007 Jan;8(1):118-27 - PubMed
  50. Neuron. 1992 Oct;9(4):705-17 - PubMed
  51. Mol Syst Biol. 2009;5:331 - PubMed
  52. Eur J Biochem. 1990 Nov 13;193(3):661-9 - PubMed
  53. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2424-8 - PubMed
  54. J Biol Chem. 1995 Jun 9;270(23):13585-8 - PubMed
  55. J Biol Chem. 1996 May 31;271(22):13033-9 - PubMed
  56. PLoS One. 2010 Feb 02;5(2):e9011 - PubMed
  57. J Neurosci. 2000 Jan 1;20(1):230-9 - PubMed
  58. Nat Cell Biol. 2002 Aug;4(8):556-64 - PubMed
  59. Bioinformatics. 2012 Sep 15;28(18):i495-i501 - PubMed
  60. Nat Genet. 2007 Apr;39(4):503-12 - PubMed
  61. Oncogene. 1990 Dec;5(12):1755-60 - PubMed
  62. J Neurosci. 2003 Oct 22;23(29):9675-86 - PubMed
  63. Exp Cell Res. 2006 Jul 15;312(12):2264-78 - PubMed
  64. Brain Res. 2009 Jan 16;1249:19-33 - PubMed
  65. Neuron. 1992 Oct;9(4):583-93 - PubMed
  66. J Neurosci. 2002 May 15;22(10):3845-54 - PubMed
  67. Bioessays. 2008 Jun;30(6):542-55 - PubMed
  68. Proc Natl Acad Sci U S A. 2000 Sep 12;97(19):10424-9 - PubMed
  69. Neuroscience. 2006 Aug 11;141(1):101-8 - PubMed
  70. J Neurosci. 2001 Jan 1;21(1):45-52 - PubMed
  71. Mol Cell Biol. 1998 Apr;18(4):1946-55 - PubMed
  72. Curr Biol. 1994 Aug 1;4(8):702-8 - PubMed
  73. Cell Biol Int. 2014 Oct;38(10):1215-20 - PubMed
  74. Neurochem Res. 2005 Apr;30(4):533-40 - PubMed
  75. Biochemistry. 2005 Aug 16;44(32):10784-95 - PubMed
  76. J Cell Biol. 2007 Aug 13;178(4):635-48 - PubMed
  77. Science. 2013 Aug 9;341(6146):670-3 - PubMed
  78. Mol Biol Cell. 2004 Apr;15(4):1881-94 - PubMed
  79. Oncogene. 1999 Mar 25;18(12):2055-68 - PubMed
  80. J Neurochem. 2008 Jun 1;105(6):2388-403 - PubMed
  81. EMBO J. 1998 Aug 3;17(15):4404-13 - PubMed
  82. Trends Pharmacol Sci. 1998 Mar;19(3):87-93 - PubMed
  83. PLoS One. 2013;8(3):e57037 - PubMed
  84. Nature. 1991 Mar 14;350(6314):158-60 - PubMed
  85. J Biol Chem. 2003 Jan 24;278(4):2101-5 - PubMed

Publication Types