Display options
Share it on

Nat Commun. 2016 Jun 01;7:11682. doi: 10.1038/ncomms11682.

Fast escape of a quantum walker from an integrated photonic maze.

Nature communications

Filippo Caruso, Andrea Crespi, Anna Gabriella Ciriolo, Fabio Sciarrino, Roberto Osellame

Affiliations

  1. LENS, QSTAR &Dipartimento di Fisica e Astronomia, Università di Firenze, via Nello Carrara 1, I-50019 Sesto Fiorentino, Italy.
  2. Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche (IFN-CNR), Piazza Leonardo da Vinci 32, I-20133 Milano, Italy.
  3. Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy.
  4. Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy.

PMID: 27248707 PMCID: PMC4895438 DOI: 10.1038/ncomms11682

Abstract

Escaping from a complex maze, by exploring different paths with several decision-making branches in order to reach the exit, has always been a very challenging and fascinating task. Wave field and quantum objects may explore a complex structure in parallel by interference effects, but without necessarily leading to more efficient transport. Here, inspired by recent observations in biological energy transport phenomena, we demonstrate how a quantum walker can efficiently reach the output of a maze by partially suppressing the presence of interference. In particular, we show theoretically an unprecedented improvement in transport efficiency for increasing maze size with respect to purely quantum and classical approaches. In addition, we investigate experimentally these hybrid transport phenomena, by mapping the maze problem in an integrated waveguide array, probed by coherent light, hence successfully testing our theoretical results. These achievements may lead towards future bio-inspired photonics technologies for more efficient transport and computation.

References

  1. Nature. 2013 Apr 11;496(7444):196-200 - PubMed
  2. Phys Rev Lett. 2010 Apr 16;104(15):153602 - PubMed
  3. Science. 2012 Apr 6;336(6077):55-8 - PubMed
  4. Nat Commun. 2016 Apr 15;7:11282 - PubMed
  5. Nat Commun. 2012 Jun 06;3:882 - PubMed
  6. Science. 2010 Sep 17;329(5998):1500-3 - PubMed
  7. Phys Rev Lett. 2015 Aug 21;115(8):083601 - PubMed
  8. Nat Commun. 2014 Jul 29;5:4522 - PubMed
  9. Phys Rev Lett. 2008 Jan 11;100(1):013906 - PubMed
  10. Phys Rev A. 1993 Aug;48(2):1687-1690 - PubMed
  11. Phys Rev Lett. 2004 May 7;92(18):187902 - PubMed
  12. Science. 2009 Jul 10;325(5937):174-7 - PubMed
  13. Phys Rev Lett. 2003 Nov 14;91(20):207901 - PubMed
  14. Sci Rep. 2012;2:605 - PubMed
  15. Science. 2013 Feb 15;339(6121):791-4 - PubMed
  16. Phys Rev Lett. 2009 Aug 28;103(9):090504 - PubMed
  17. Nature. 2007 Apr 12;446(7137):782-6 - PubMed
  18. Phys Rev Lett. 2009 May 8;102(18):180501 - PubMed
  19. J Chem Phys. 2008 Nov 7;129(17):174106 - PubMed
  20. Nature. 2007 Mar 1;446(7131):52-5 - PubMed
  21. IEEE Trans Nanobioscience. 2012 Jun;11(2):131-4 - PubMed
  22. Phys Rev Lett. 2010 Nov 5;105(19):190501 - PubMed
  23. Phys Rev Lett. 2012 Jan 6;108(1):010502 - PubMed
  24. Science. 1995 Feb 10;267(5199):868-71 - PubMed
  25. Nat Commun. 2013;4:1555 - PubMed
  26. Phys Rev Lett. 2010 Mar 12;104(10):100503 - PubMed
  27. Phys Rev Lett. 2008 May 2;100(17):170506 - PubMed

Publication Types