Display options
Share it on

Sci Rep. 2016 May 16;6:26255. doi: 10.1038/srep26255.

Smooth and flat phase-locked Kerr frequency comb generation by higher order mode suppression.

Scientific reports

S-W Huang, H Liu, J Yang, M Yu, D-L Kwong, C W Wong

Affiliations

  1. Mesoscopic Optics and Quantum Electronics Laboratory, University of California Los Angeles, CA, USA.
  2. Institute of Microelectronics, Singapore, Singapore.

PMID: 27181420 PMCID: PMC4867630 DOI: 10.1038/srep26255

Abstract

High-Q microresonator is perceived as a promising platform for optical frequency comb generation, via dissipative soliton formation. In order to achieve a higher quality factor and obtain the necessary anomalous dispersion, multi-mode waveguides were previously implemented in Si3N4 microresonators. However, coupling between different transverse mode families in multi-mode waveguides results in periodic disruption of dispersion and quality factor, and consequently causes perturbation to dissipative soliton formation and amplitude modulation to the corresponding spectrum. Careful choice of pump wavelength to avoid the mode crossing region is thus critical in conventional Si3N4 microresonators. Here, we report a novel design of Si3N4 microresonator in which single-mode operation, high quality factor, and anomalous dispersion are attained simultaneously. The novel microresonator is consisted of uniform single-mode waveguides in the semi-circle region, to eliminate bending induced mode coupling, and adiabatically tapered waveguides in the straight region, to avoid excitation of higher order modes. The intrinsic quality factor of the microresonator reaches 1.36 × 10(6) while the group velocity dispersion remains to be anomalous at -50 fs(2)/mm. With this novel microresonator, we demonstrate that broadband phase-locked Kerr frequency combs with flat and smooth spectra can be generated by pumping at any resonances in the optical C-band.

References

  1. Phys Rev Lett. 2015 Feb 6;114(5):053901 - PubMed
  2. Chemphyschem. 2006 Nov 13;7(11):2242-58 - PubMed
  3. Appl Opt. 1982 Mar 15;21(6):1069-72 - PubMed
  4. Opt Lett. 2013 Jan 1;38(1):37-9 - PubMed
  5. Opt Express. 2013 Sep 23;21(19):22829-33 - PubMed
  6. Opt Lett. 2013 Aug 1;38(15):2810-3 - PubMed
  7. Phys Rev Lett. 2011 Aug 5;107(6):063901 - PubMed
  8. Nat Commun. 2015 Aug 11;6:7957 - PubMed
  9. Phys Rev Lett. 2012 Dec 7;109(23):233901 - PubMed
  10. Opt Lett. 2011 Sep 1;36(17):3398-400 - PubMed
  11. Sci Adv. 2016 Apr;2(4):e1501489 - PubMed
  12. Phys Rev Lett. 2004 Dec 10;93(24):243905 - PubMed
  13. Nat Commun. 2013;4:1345 - PubMed
  14. Opt Lett. 2014 Sep 1;39(17):5134-7 - PubMed
  15. Opt Express. 2012 Nov 19;20(24):27290-8 - PubMed
  16. Science. 2016 Jan 22;351(6271):357-60 - PubMed
  17. Opt Express. 2013 Jan 14;21(1):1335-43 - PubMed
  18. Phys Rev Lett. 2008 Aug 1;101(5):053903 - PubMed
  19. Science. 2011 Apr 29;332(6029):555-9 - PubMed
  20. Opt Lett. 2014 Oct 1;39(19):5503-6 - PubMed
  21. Sci Rep. 2015 Aug 27;5:13355 - PubMed
  22. Phys Rev Lett. 2004 Aug 20;93(8):083904 - PubMed
  23. Nature. 2008 Apr 3;452(7187):610-2 - PubMed
  24. Phys Rev Lett. 2014 Sep 19;113(12):123901 - PubMed

Publication Types