Display options
Share it on

Front Physiol. 2016 May 24;7:181. doi: 10.3389/fphys.2016.00181. eCollection 2016.

Cardiac Morphology and Function, and Blood Gas Transport in Aquaporin-1 Knockout Mice.

Frontiers in physiology

Samer Al-Samir, Yong Wang, Joachim D Meissner, Gerolf Gros, Volker Endeward

Affiliations

  1. Abteilung Molekular- und Zellphysiologie, AG Vegetative Physiologie 4220, Medizinische Hochschule Hannover Hannover, Germany.
  2. Division Molecular and Translational Cardiology, Department Cardiology and Angiology, Medizinische Hochschule Hannover Hannover, Germany.

PMID: 27252655 PMCID: PMC4878313 DOI: 10.3389/fphys.2016.00181

Abstract

We have studied cardiac and respiratory functions of aquaporin-1-deficient mice by the Pressure-Volume-loop technique and by blood gas analysis. In addition, the morphological properties of the animals' hearts were analyzed. In anesthesia under maximal dobutamine stimulation, the mice exhibit a moderately elevated heart rate of < 600 min(-1) and an O2 consumption of ~0.6 ml/min/g, which is about twice the basal rate. In this state, which is similar to the resting state of the conscious animal, all cardiac functions including stroke volume and cardiac output exhibited resting values and were identical between deficient and wildtype animals. Likewise, pulmonary and peripheral exchange of O2 and CO2 were normal. In contrast, several morphological parameters of the heart tissue of deficient mice were altered: (1) left ventricular wall thickness was reduced by 12%, (2) left ventricular mass, normalized to tibia length, was reduced by 10-20%, (3) cardiac muscle fiber cross sectional area was decreased by 17%, and (4) capillary density was diminished by 10%. As the P-V-loop technique yielded normal end-diastolic and end-systolic left ventricular volumes, the deficient hearts are characterized by thin ventricular walls in combination with normal intraventricular volumes. The aquaporin-1-deficient heart thus seems to be at a disadvantage compared to the wild-type heart by a reduced left-ventricular wall thickness and an increased diffusion distance between blood capillaries and muscle mitochondria. While under the present quasi-resting conditions these morphological alterations have no consequences for cardiac function, we expect that the deficient hearts will show a reduced maximal cardiac output.

Keywords: Pressure-Volume-loop technique; aquaporin-1; blood gases; heart morphology; knockout mice

References

  1. Heart Vessels. 2010 May;25(3):237-47 - PubMed
  2. Hypertension. 2006 Jul;48(1):157-64 - PubMed
  3. J Biol Chem. 2000 Jan 28;275(4):2686-92 - PubMed
  4. Microcirculation. 2016 Feb;23 (2):134-45 - PubMed
  5. FASEB J. 2014 Mar;28(3):1446-53 - PubMed
  6. Am J Physiol. 1992 Sep;263(3 Pt 2):R728-33 - PubMed
  7. Am J Physiol. 1997 Feb;272(2 Pt 2):H1053-61 - PubMed
  8. Science. 1992 Apr 17;256(5055):385-7 - PubMed
  9. J Clin Invest. 1997 Nov 1;100(9):2362-70 - PubMed
  10. Genomics. 2002 May;79(5):679-85 - PubMed
  11. Liver Int. 2011 Nov;31(10):1554-64 - PubMed
  12. Int J Gynecol Cancer. 2006 Jan-Feb;16 Suppl 1:400-5 - PubMed
  13. FEBS J. 2014 Feb;281(3):647-56 - PubMed
  14. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9660-4 - PubMed
  15. N Engl J Med. 2001 Jul 19;345(3):175-9 - PubMed
  16. J Clin Endocrinol Metab. 2013 Apr;98(4):E672-82 - PubMed
  17. Am J Physiol. 1974 Mar;226(3):490-5 - PubMed
  18. Am J Physiol Renal Physiol. 2007 May;292(5):F1443-51 - PubMed
  19. Basic Res Cardiol. 2013 Nov;108(6):393 - PubMed
  20. Hepatology. 2010 Jul;52(1):238-48 - PubMed
  21. Am J Physiol Regul Integr Comp Physiol. 2002 Mar;282(3):R928-35 - PubMed
  22. Pflugers Arch. 2008 Jul;456(4):693-700 - PubMed
  23. Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5406-11 - PubMed
  24. Breast Cancer Res Treat. 2010 Feb;120(1):67-76 - PubMed
  25. J Mol Med (Berl). 2013 May;91(5):613-23 - PubMed
  26. Histol Histopathol. 2011 Apr;26(4):451-9 - PubMed
  27. Can J Physiol Pharmacol. 1967 May;45(3):543-9 - PubMed
  28. Front Physiol. 2014 Jan 08;4:382 - PubMed
  29. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7275-9 - PubMed
  30. J Clin Invest. 2007 Nov;117(11):3188-97 - PubMed
  31. Am J Physiol. 1998 Feb;274(2 Pt 1):C543-8 - PubMed
  32. J Pharmacol Toxicol Methods. 1993 Dec;30(4):209-15 - PubMed
  33. Microvasc Res. 2008 Apr;75(3):297-301 - PubMed
  34. FASEB J. 2008 Jan;22(1):64-73 - PubMed
  35. Clin Sci (Lond). 2002 Dec;103(6):567-75 - PubMed
  36. Nature. 2005 Apr 7;434(7034):786-92 - PubMed
  37. Expert Rev Mol Med. 2008 May 16;10:e13 - PubMed
  38. Circulation. 2011 Feb 8;123(5):504-14 - PubMed
  39. J Struct Biol. 2007 Mar;157(3):534-44 - PubMed
  40. Exp Physiol. 2010 Dec;95(12):1107-30 - PubMed
  41. Am J Physiol Renal Physiol. 2001 Aug;281(2):F255-63 - PubMed
  42. Pflugers Arch. 2014 Feb;466(2):237-51 - PubMed
  43. Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):419-23 - PubMed
  44. Respir Physiol Neurobiol. 2007 Dec 15;159(3):324-30 - PubMed
  45. FASEB J. 2006 Oct;20(12):1974-81 - PubMed
  46. J Biol Chem. 1998 Feb 20;273(8):4296-9 - PubMed

Publication Types