Display options
Share it on

Sci Rep. 2016 Jun 21;6:28037. doi: 10.1038/srep28037.

Control efficacy of complex networks.

Scientific reports

Xin-Dong Gao, Wen-Xu Wang, Ying-Cheng Lai

Affiliations

  1. School of Systems Science, Beijing Normal University, Beijing, 100875, P. R. China.
  2. Business School, University of Shanghai for Science and Technology, Shanghai 200093, China.
  3. School of Electrical, Compute and Energy Engineering, Arizona State University, Tempe, Arizona, 85287 USA.
  4. Department of Physics, Arizona State University, Tempe, Arizona 85287, USA.

PMID: 27324438 PMCID: PMC4914948 DOI: 10.1038/srep28037

Abstract

Controlling complex networks has become a forefront research area in network science and engineering. Recent efforts have led to theoretical frameworks of controllability to fully control a network through steering a minimum set of driver nodes. However, in realistic situations not every node is accessible or can be externally driven, raising the fundamental issue of control efficacy: if driving signals are applied to an arbitrary subset of nodes, how many other nodes can be controlled? We develop a framework to determine the control efficacy for undirected networks of arbitrary topology. Mathematically, based on non-singular transformation, we prove a theorem to determine rigorously the control efficacy of the network and to identify the nodes that can be controlled for any given driver nodes. Physically, we develop the picture of diffusion that views the control process as a signal diffused from input signals to the set of controllable nodes. The combination of mathematical theory and physical reasoning allows us not only to determine the control efficacy for model complex networks and a large number of empirical networks, but also to uncover phenomena in network control, e.g., hub nodes in general possess lower control centrality than an average node in undirected networks.

References

  1. Science. 1999 Oct 15;286(5439):509-12 - PubMed
  2. Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):404-9 - PubMed
  3. Nature. 2001 Mar 8;410(6825):268-76 - PubMed
  4. Science. 2002 May 3;296(5569):910-3 - PubMed
  5. Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):7821-6 - PubMed
  6. Science. 2002 Oct 25;298(5594):824-7 - PubMed
  7. Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Dec;68(6 Pt 2):065103 - PubMed
  8. Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Sep;74(3 Pt 2):036104 - PubMed
  9. Phys Rev E Stat Nonlin Soft Matter Phys. 2007 May;75(5 Pt 2):056110 - PubMed
  10. Nature. 2011 May 12;473(7346):167-73 - PubMed
  11. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Feb;85(2 Pt 2):026115 - PubMed
  12. PLoS One. 2012;7(6):e38398 - PubMed
  13. Phys Rev Lett. 2012 May 25;108(21):218703 - PubMed
  14. PLoS One. 2012;7(9):e44459 - PubMed
  15. Proc Natl Acad Sci U S A. 2013 Feb 12;110(7):2460-5 - PubMed
  16. Nat Commun. 2013;4:2002 - PubMed
  17. Nat Commun. 2013;4:1942 - PubMed
  18. Sci Rep. 2013;3:2354 - PubMed
  19. Nat Commun. 2013;4:2447 - PubMed
  20. Science. 2014 Mar 21;343(6177):1373-6 - PubMed
  21. Proc Natl Acad Sci U S A. 2014 May 13;111(19):7156-60 - PubMed
  22. Phys Rev Lett. 2014 Aug 15;113(7):078701 - PubMed
  23. Nat Commun. 2014 Nov 12;5:5415 - PubMed
  24. Sci Rep. 2015 Feb 12;5:8422 - PubMed
  25. Phys Rev X. 2015 Jul-Sep;5:null - PubMed
  26. Nat Commun. 2016 Apr 14;7:11323 - PubMed
  27. Phys Rev X. 2015 Jan-Mar;5(1):null - PubMed
  28. Psychometrika. 1966 Dec;31(4):581-603 - PubMed
  29. Nature. 1998 Jun 4;393(6684):440-2 - PubMed

Publication Types