Display options
Share it on

Conserv Physiol. 2013 Aug 26;1(1):cot022. doi: 10.1093/conphys/cot022. eCollection 2013.

Using physiology to understand climate-driven changes in disease and their implications for conservation.

Conservation physiology

Jason R Rohr, Thomas R Raffel, Andrew R Blaustein, Pieter T J Johnson, Sara H Paull, Suzanne Young

Affiliations

  1. Integrative Biology, University of South Florida, Tampa, FL 33620, USA.
  2. Department of Biological Science, Oakland University, Rochester, MI 48309-4401, USA.
  3. Department of Zoology, Oregon State University, Corvallis, OR 97331-2914, USA.
  4. Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA.

PMID: 27293606 PMCID: PMC4732440 DOI: 10.1093/conphys/cot022

Abstract

Controversy persists regarding the contributions of climate change to biodiversity losses, through its effects on the spread and emergence of infectious diseases. One of the reasons for this controversy is that there are few mechanistic studies that explore the links among climate change, infectious disease, and declines of host populations. Given that host-parasite interactions are generally mediated by physiological responses, we submit that physiological models could facilitate the prediction of how host-parasite interactions will respond to climate change, and might offer theoretical and terminological cohesion that has been lacking in the climate change-disease literature. We stress that much of the work on how climate influences host-parasite interactions has emphasized changes in climatic means, despite a hallmark of climate change being changes in climatic variability and extremes. Owing to this gap, we highlight how temporal variability in weather, coupled with non-linearities in responses to mean climate, can be used to predict the effects of climate on host-parasite interactions. We also discuss the climate variability hypothesis for disease-related declines, which posits that increased unpredictable temperature variability might provide a temporary advantage to pathogens because they are smaller and have faster metabolisms than their hosts, allowing more rapid acclimatization following a temperature shift. In support of these hypotheses, we provide case studies on the role of climatic variability in host population declines associated with the emergence of the infectious diseases chytridiomycosis, withering syndrome, and malaria. Finally, we present a mathematical model that provides the scaffolding to integrate metabolic theory, physiological mechanisms, and large-scale spatiotemporal processes to predict how simultaneous changes in climatic means, variances, and extremes will affect host-parasite interactions. However, several outstanding questions remain to be answered before investigators can accurately predict how changes in climatic means and variances will affect infectious diseases and the conservation status of host populations.

Keywords: Acclimatization; amphibian; chytridiomycosis; climate change; host–parasite interaction; metabolic theory of ecology

References

  1. Science. 2000 Sep 22;289(5487):2068-74 - PubMed
  2. Comp Biochem Physiol A Mol Integr Physiol. 2002 Aug;132(4):739-61 - PubMed
  3. Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12788-93 - PubMed
  4. Nature. 2001 Apr 5;410(6829):681-4 - PubMed
  5. Ecology. 2009 Mar;90(3):588-97 - PubMed
  6. Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15135-9 - PubMed
  7. Science. 2002 Jun 21;296(5576):2158-62 - PubMed
  8. Ecology. 2009 Dec;90(12):3379-92 - PubMed
  9. Sci Am. 2000 Aug;283(2):50-7 - PubMed
  10. Nature. 1996 Feb 22;379(6567):720-2 - PubMed
  11. Am Nat. 2013 Aug;182(2):234-48 - PubMed
  12. Ecol Lett. 2013 Jan;16(1):9-21 - PubMed
  13. Glob Chang Biol. 2013 Aug;19(8):2373-80 - PubMed
  14. Int J Parasitol. 2007 Mar;37(3-4):359-64 - PubMed
  15. PLoS One. 2009 Dec 22;4(12):e8408 - PubMed
  16. J Exp Biol. 2006 Mar;209(Pt 6):1064-73 - PubMed
  17. Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17436-41 - PubMed
  18. PLoS Biol. 2007 Jun;5(6):e124 - PubMed
  19. PLoS One. 2011 Mar 10;6(3):e16708 - PubMed
  20. Science. 2010 May 14;328(5980):894-9 - PubMed
  21. J Bacteriol. 1982 Jan;149(1):1-5 - PubMed
  22. Integr Zool. 2013 Jun;8(2):145-61 - PubMed
  23. J Appl Physiol. 1974 Oct;37(4):515-20 - PubMed
  24. PLoS One. 2007 Nov 07;2(11):e1130 - PubMed
  25. Nature. 2009 Sep 24;461(7263):511-4 - PubMed
  26. Trends Ecol Evol. 2004 Oct;19(10):535-44 - PubMed
  27. Science. 2011 Jul 22;333(6041):445-8 - PubMed
  28. Ecology. 2009 Apr;90(4):888-900 - PubMed
  29. Nat Rev Microbiol. 2012 Dec;10 (12 ):869-76 - PubMed
  30. Ecology. 2013 Jan;94(1):161-8 - PubMed
  31. Biol Lett. 2005 Jun 22;1(2):181-4 - PubMed
  32. Philos Trans R Soc Lond B Biol Sci. 2012 Jun 19;367(1596):1688-707 - PubMed
  33. Vet Immunol Immunopathol. 1991 Jul;28(3-4):365-77 - PubMed
  34. Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3835-40 - PubMed
  35. J Nematol. 1988 Apr;20(2):219-26 - PubMed
  36. Nature. 2012 Apr 11;484(7393):186-94 - PubMed
  37. PLoS Biol. 2004 Nov;2(11):e351 - PubMed
  38. Adv Parasitol. 2004;57:191-253 - PubMed
  39. Ann N Y Acad Sci. 2010 May;1195:129-48 - PubMed
  40. Science. 2004 Dec 3;306(5702):1783-6 - PubMed
  41. Am Nat. 2006 Nov;168(5):630-44 - PubMed
  42. Proc Natl Acad Sci U S A. 2010 May 4;107(18):8269-74 - PubMed
  43. Proc Biol Sci. 2012 Dec 19;280(1753):20122506 - PubMed
  44. Ecol Lett. 2012 Dec;15(12):1465-74 - PubMed
  45. Trends Plant Sci. 2003 Jul;8(7):343-51 - PubMed
  46. Nature. 2002 Mar 28;416(6879):389-95 - PubMed
  47. Q Rev Biol. 1996 Dec;71(4):511-48 - PubMed
  48. Trends Ecol Evol. 2011 Jun;26(6):270-7 - PubMed
  49. Science. 2000 Jan 21;287(5452):443-9 - PubMed
  50. Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):13844-9 - PubMed
  51. Philos Trans R Soc Lond B Biol Sci. 2008 Jan 27;363(1490):321-39 - PubMed
  52. Ecol Lett. 2006 Apr;9(4):467-84 - PubMed
  53. Proc Natl Acad Sci U S A. 2008 Aug 12;105 Suppl 1:11466-73 - PubMed
  54. Mycologia. 2004 Jan-Feb;96(1):9-15 - PubMed
  55. Nature. 2008 Feb 21;451(7181):990-3 - PubMed
  56. Nature. 2004 Jan 8;427(6970):145-8 - PubMed
  57. Ecol Lett. 2013 Jan;16(1):22-30 - PubMed
  58. Ecology. 2008 Jun;89(6):1627-39 - PubMed
  59. Science. 2001 Sep 21;293(5538):2248-51 - PubMed

Publication Types