Display options
Share it on

Conserv Physiol. 2014 Nov 04;2(1):cou050. doi: 10.1093/conphys/cou050. eCollection 2014.

Climate warming causes life-history evolution in a model for Atlantic cod (Gadus morhua).

Conservation physiology

Rebecca E Holt, Christian Jørgensen

Affiliations

  1. Department of Biology, University of Bergen, PO Box 7803, 5020 Bergen, Norway.
  2. Uni Research, PO Box 7810, 5020 Bergen, Norway.

PMID: 27293671 PMCID: PMC4806736 DOI: 10.1093/conphys/cou050

Abstract

Climate change influences the marine environment, with ocean warming being the foremost driving factor governing changes in the physiology and ecology of fish. At the individual level, increasing temperature influences bioenergetics and numerous physiological and life-history processes, which have consequences for the population level and beyond. We provide a state-dependent energy allocation model that predicts temperature-induced adaptations for life histories and behaviour for the North-East Arctic stock (NEA) of Atlantic cod (Gadus morhua) in response to climate warming. The key constraint is temperature-dependent respiratory physiology, and the model includes a number of trade-offs that reflect key physiological and ecological processes. Dynamic programming is used to find an evolutionarily optimal strategy of foraging and energy allocation that maximizes expected lifetime reproductive output given constraints from physiology and ecology. The optimal strategy is then simulated in a population, where survival, foraging behaviour, growth, maturation and reproduction emerge. Using current forcing, the model reproduces patterns of growth, size-at-age, maturation, gonad production and natural mortality for NEA cod. The predicted climate responses are positive for this stock; under a 2°C warming, the model predicted increased growth rates and a larger asymptotic size. Maturation age was unaffected, but gonad weight was predicted to more than double. Predictions for a wider range of temperatures, from 2 to 7°C, show that temperature responses were gradual; fish were predicted to grow faster and increase reproductive investment at higher temperatures. An emergent pattern of higher risk acceptance and increased foraging behaviour was also predicted. Our results provide important insight into the effects of climate warming on NEA cod by revealing the underlying mechanisms and drivers of change. We show how temperature-induced adaptations of behaviour and several life-history traits are not only mediated by physiology but also by trade-offs with survival, which has consequences for conservation physiology.

Keywords: Adaptation; behaviour; bioenergetics; climate; respiratory physiology

References

  1. Trends Ecol Evol. 2000 Feb;15(2):56-61 - PubMed
  2. Science. 2000 Sep 22;289(5487):2068-74 - PubMed
  3. Naturwissenschaften. 2001 Apr;88(4):137-46 - PubMed
  4. Evolution. 2001 Sep;55(9):1863-72 - PubMed
  5. Evolution. 2001 Sep;55(9):1873-81 - PubMed
  6. Nature. 2002 Mar 28;416(6879):389-95 - PubMed
  7. Science. 2002 Jul 5;297(5578):94-6 - PubMed
  8. Am Nat. 2004 Jul;164(1):38-50 - PubMed
  9. Philos Trans R Soc Lond B Biol Sci. 2004 Jun 29;359(1446):873-90 - PubMed
  10. Nature. 2005 Apr 28;434(7037):1121-7 - PubMed
  11. Science. 2005 Jun 24;308(5730):1912-5 - PubMed
  12. Science. 2005 Nov 11;310(5750):987-91 - PubMed
  13. Evolution. 2006 Jun;60(6):1269-78 - PubMed
  14. Proc Biol Sci. 2007 Feb 7;274(1608):431-8 - PubMed
  15. Science. 2007 Jan 5;315(5808):95-7 - PubMed
  16. Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9715-9 - PubMed
  17. Oecologia. 2007 Nov;154(1):237-46 - PubMed
  18. Science. 2007 Nov 23;318(5854):1247-8 - PubMed
  19. Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13492-6 - PubMed
  20. Ecology. 2008 Dec;89(12):3436-48 - PubMed
  21. Proc Natl Acad Sci U S A. 2009 Jan 20;106(3):952-4 - PubMed
  22. Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12788-93 - PubMed
  23. Ecol Lett. 2010 Feb;13(2):184-93 - PubMed
  24. J Exp Biol. 2010 Mar 15;213(6):881-93 - PubMed
  25. J Fish Biol. 2010 May;76(7):1576-91 - PubMed
  26. J Fish Biol. 2010 Nov;77(8):1745-79 - PubMed
  27. Nature. 2011 Feb 24;470(7335):479-85 - PubMed
  28. J Anim Ecol. 2011 Sep;80(5):1024-33 - PubMed
  29. Science. 2011 Nov 4;334(6056):652-5 - PubMed
  30. Glob Chang Biol. 2014 Feb;20(2):352-9 - PubMed
  31. Evol Appl. 2014 Jan;7(1):169-91 - PubMed
  32. Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3478-83 - PubMed
  33. Science. 2014 Jun 6;344(6188):1084-5 - PubMed
  34. Ecol Evol. 2014 May;4(10):1981-93 - PubMed
  35. Ecol Evol. 2014 Sep;4(18):3596-611 - PubMed
  36. Evol Appl. 2008 May;1(2):252-70 - PubMed
  37. Evol Appl. 2010 May;3(3):221-43 - PubMed
  38. Evol Appl. 2011 Jan;4(1):18-29 - PubMed
  39. Oecologia. 1988 Nov;77(3):343-349 - PubMed

Publication Types