Display options
Share it on

Conserv Physiol. 2014 Dec 03;2(1):cou058. doi: 10.1093/conphys/cou058. eCollection 2014.

Chronic exposure to a low dose of ingested petroleum disrupts corticosterone receptor signalling in a tissue-specific manner in the house sparrow (Passer domesticus).

Conservation physiology

Christine R Lattin, L Michael Romero

Affiliations

  1. Department of Biology, Tufts University, Medford, MA 02155, USA.

PMID: 27293679 PMCID: PMC4732471 DOI: 10.1093/conphys/cou058

Abstract

Stress-induced concentrations of glucocorticoid hormones (including corticosterone, CORT) can be suppressed by chronic exposure to a low dose of ingested petroleum. However, endocrine-disrupting chemicals could interfere with CORT signalling beyond the disruption of hormone titres, including effects on receptors in different target tissues. In this study, we examined the effects of 6 weeks of exposure to a petroleum-laced diet (1% oil weight:food weight) on tissue mass and intracellular CORT receptors in liver, fat, muscle and kidney (metabolic tissues), spleen (an immune tissue) and testes (a reproductive tissue). In the laboratory, male house sparrows were fed either a 1% weathered crude oil (n = 12) or a control diet (n = 12); glucocorticoid receptors and mineralocorticoid receptors were quantified using radioligand binding assays. In oil-exposed birds, glucocorticoid receptors were lower in one metabolic tissue (liver), higher in another metabolic tissue (fat) and unchanged in four other tissues (kidney, muscle, spleen and testes) compared with control birds. We saw no differences in mineralocorticoid receptors between groups. We also saw a trend towards reduced mass of the testes in oil-exposed birds compared with controls, but no differences in fat, kidney, liver, muscle or spleen mass between the two groups. This is the first study to examine the effects of petroleum on CORT receptor density in more than one or two target tissues. Given that a chronic low dose of ingested petroleum can affect stress-induced CORT titres as well as receptor density, this demonstrates that oil can act at multiple levels to disrupt an animal's response to environmental stressors. This also highlights the potential usefulness of the stress response as a bioindicator of chronic crude oil exposure.

Keywords: bird; endocrine disruption; glucocorticoid receptor; hypothalamic–pituitary–adrenal axis; mineralocorticoid receptor; toxicology

References

  1. Biochem Pharmacol. 2009 Feb 15;77(4):474-84 - PubMed
  2. Ecotoxicology. 2009 Jul;18(5):514-21 - PubMed
  3. Gen Comp Endocrinol. 2008 Jul;157(3):266-74 - PubMed
  4. Gen Comp Endocrinol. 2000 Oct;120(1):27-34 - PubMed
  5. Neuroendocrinology. 1987 May;45(5):407-12 - PubMed
  6. Endocr Rev. 1998 Jun;19(3):269-301 - PubMed
  7. Endocr Rev. 1996 Dec;17(6):587-609 - PubMed
  8. PLoS One. 2014 Jul 16;9(7):e102106 - PubMed
  9. Brain Res. 1991 May 24;549(2):236-46 - PubMed
  10. J Neuroendocrinol. 2001 May;13(5):412-20 - PubMed
  11. Aquat Toxicol. 2004 Apr 28;67(3):273-85 - PubMed
  12. Environ Sci Technol. 2004 Jan 1;38(1):19-25 - PubMed
  13. Brain Behav Immun. 2010 Aug;24(6):908-18 - PubMed
  14. J Steroid Biochem Mol Biol. 1990 Nov 20;37(3):387-94 - PubMed
  15. Aquat Toxicol. 2000 Nov;51(1):45-54 - PubMed
  16. Physiol Res. 2008;57(3):427-35 - PubMed
  17. Endocrinology. 2002 Nov;143(11):4184-95 - PubMed
  18. Endocrinology. 1990 Aug;127(2):759-65 - PubMed
  19. Environ Toxicol Chem. 2008 Nov;27(11):2326-31 - PubMed
  20. Physiol Rev. 2013 Jul;93(3):1139-206 - PubMed
  21. J Exp Zool. 1992 Dec 15;264(4):419-28 - PubMed
  22. J Steroid Biochem Mol Biol. 2006 Dec;102(1-5):222-31 - PubMed
  23. Am J Physiol Regul Integr Comp Physiol. 2004 Oct;287(4):R787-93 - PubMed
  24. Vet Clin Pathol. 2002;31(3):140-51 - PubMed
  25. Endocrinology. 1984 Jan;114(1):287-92 - PubMed
  26. Environ Health Perspect. 1998 Dec;106(12):769-72 - PubMed
  27. Comp Biochem Physiol C. 1981;68C(2):103-7 - PubMed
  28. Environ Sci Technol. 2002 Nov 15;36(22):4754-60 - PubMed
  29. Endocr Rev. 2000 Feb;21(1):55-89 - PubMed
  30. Trends Ecol Evol. 2004 May;19(5):249-55 - PubMed
  31. Avian Dis. 2012 Dec;56(4):704-10 - PubMed
  32. Chem Res Toxicol. 2004 Aug;17(8):1064-76 - PubMed
  33. Gen Comp Endocrinol. 2006 Sep 1;148(2):132-49 - PubMed
  34. Environ Sci Technol. 2009 Aug 1;43(15):6031-8 - PubMed
  35. J Wildl Dis. 1982 Apr;18(2):235-41 - PubMed
  36. J Steroid Biochem. 1989 Jan;32(1A):99-104 - PubMed
  37. Physiol Biochem Zool. 1999 Mar-Apr;72(2):250-3 - PubMed
  38. Environ Res. 1982 Feb;27(1):206-15 - PubMed
  39. Toxicol Sci. 2006 Nov;94(1):3-21 - PubMed
  40. Arch Environ Contam Toxicol. 1982;11(4):497-502 - PubMed
  41. Best Pract Res Clin Endocrinol Metab. 2006 Mar;20(1):111-20 - PubMed
  42. Annu Rev Pharmacol Toxicol. 2003;43:309-34 - PubMed
  43. Toxicol Sci. 2006 Sep;93(1):41-9 - PubMed
  44. Gen Comp Endocrinol. 2009 Sep 1;163(1-2):214-24 - PubMed
  45. Ecotoxicology. 2003 Feb-Aug;12(1-4):199-208 - PubMed
  46. Mol Endocrinol. 1987 Jan;1(1):68-74 - PubMed
  47. J Exp Biol. 2014 Jul 15;217(Pt 14):2601-8 - PubMed
  48. Gen Comp Endocrinol. 2012 Nov 1;179(2):214-20 - PubMed
  49. Environ Res. 1984 Apr;33(2):343-52 - PubMed
  50. Environ Res. 1979 Dec;20(2):425-44 - PubMed
  51. Br Med J. 1963 Oct 12;2(5362):887-91 - PubMed
  52. Placenta. 1984 Mar-Apr;5(2):105-16 - PubMed
  53. Aquat Toxicol. 2009 Jun 4;93(1):70-82 - PubMed
  54. Basic Clin Pharmacol Toxicol. 2005 Apr;96(4):309-15 - PubMed

Publication Types