Display options
Share it on

Conserv Physiol. 2015 May 25;3(1):cov019. doi: 10.1093/conphys/cov019. eCollection 2015.

The degradation of proteins in pinniped skeletal muscle: viability of post-mortem tissue in physiological research.

Conservation physiology

Colby D Moore, Andreas Fahlman, Daniel E Crocker, Kathleen A Robbins, Stephen J Trumble

Affiliations

  1. Department of Biology, Baylor University, One Bear Place, Waco, TX 76706, USA.
  2. Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.
  3. Department of Biology, Sonoma State University, 1801 East Cotati Avenue, Rohnert Park, CA 94928, USA.

PMID: 27293704 PMCID: PMC4778441 DOI: 10.1093/conphys/cov019

Abstract

As marine divers, pinnipeds have a high capacity for exercise at depth while holding their breath. With finite access to oxygen, these species need to be capable of extended aerobic exercise and conservation of energy. Pinnipeds must deal with common physiological hurdles, such as hypoxia, exhaustion and acidosis, that are common to all exercising mammals. The physiological mechanisms in marine mammals used for managing oxygen and carbon dioxide have sparked much research, but access to animals and tissues is difficult and requires permits. Deceased animals that are either bycaught or stranded provide one potential source for tissues, but the validity of biochemical data from post-mortem samples has not been rigorously assessed. Tissues collected from stranded diving mammals may be a crucial source to add to our limited knowledge on the physiology of some of these animals and important to the conservation and management of these species. We aim to determine the reliability of biochemical assays derived from post-mortem tissue and to promote the immediate sampling of stranded animals for the purpose of physiological research. In this study, we mapped the temporal degradation of muscle enzymes from biopsied Northern elephant seals (Mirounga angustirostris) and highlight recommendations for storage protocols for the best preservation of tissue. We also compared the enzymatic activity of different muscle groups (pectoral and latissimus dorsi) in relation to locomotion and measured the effects of four freeze-thaw cycles on muscle tissue enzyme function. Results indicate that enzymatic activity fluctuates greatly, especially with varying storage temperature, storage time, species and muscle group being assayed. In contrast, proteins, such as myoglobin, remain relatively continuous in their increase at 4°C for 48 h. Stranded animals can be a valuable source of biochemical data, but enzyme assays should be used only with great caution in post-mortem tissues.

Keywords: Degradation; enzyme; myoglobin; pinniped

References

  1. Biochemistry. 1991 Sep 24;30(38):9281-6 - PubMed
  2. J Exp Biol. 2002 Dec;205(Pt 23):3601-8 - PubMed
  3. J Exp Biol. 1987 Sep;131:117-35 - PubMed
  4. J Pharm Sci. 1999 Feb;88(2):199-208 - PubMed
  5. Physiol Biochem Zool. 2005 Nov-Dec;78(6):1057-68 - PubMed
  6. J Exp Biol. 2008 Aug;211(Pt 16):2559-65 - PubMed
  7. Am J Physiol Regul Integr Comp Physiol. 2006 Jun;290(6):R1720-7 - PubMed
  8. J Nutr. 1999 Jan;129(1S Suppl):227S-237S - PubMed
  9. PLoS One. 2012;7(5):e36728 - PubMed
  10. Biomol Eng. 2005 Jun;22(1-3):21-30 - PubMed
  11. Biotechnol Bioeng. 1992 Feb 5;39(3):320-6 - PubMed
  12. J Exp Biol. 2008 Oct;211(Pt 20):3323-32 - PubMed
  13. J Exp Biol. 2009 Mar;212(Pt 6):790-6 - PubMed
  14. J Exp Biol. 2013 May 15;216(Pt 10):1862-71 - PubMed
  15. J Comp Physiol B. 2009 Nov;179(8):985-96 - PubMed
  16. Annu Rev Physiol. 1981;43:343-56 - PubMed
  17. J Lab Clin Med. 1963 Jan;61:138-45 - PubMed
  18. J Anim Ecol. 2009 May;78(3):513-23 - PubMed
  19. Physiol Biochem Zool. 2012 Jan-Feb;85(1):11-20 - PubMed
  20. J Exp Biol. 2010 May;213(Pt 10):1676-84 - PubMed
  21. Meat Sci. 2006 Nov;74(3):510-5 - PubMed
  22. Respir Physiol. 1970 May;9(2):277-86 - PubMed
  23. J Biomed Biotechnol. 2012;2012:493618 - PubMed
  24. J Exp Biol. 1994 Sep;194:33-46 - PubMed
  25. J Comp Physiol B. 2007 May;177(4):483-94 - PubMed
  26. Front Physiol. 2014 Jun 10;5:217 - PubMed
  27. Equine Vet J. 2009 Jan;41(1):82-6 - PubMed
  28. Biochem Biophys Res Commun. 1996 Nov 21;228(3):813-8 - PubMed
  29. J Exp Biol. 2003 Nov;206(Pt 22):4105-11 - PubMed
  30. J Biol Chem. 1995 Mar 31;270(13):7288-94 - PubMed
  31. J Appl Physiol (1985). 1999 Apr;86(4):1247-56 - PubMed
  32. J Comp Physiol B. 2010 Jun;180(5):757-66 - PubMed
  33. J Morphol. 2013 Jun;274(6):663-75 - PubMed
  34. Int J Biochem Cell Biol. 2005 Oct;37(10):2134-46 - PubMed
  35. J Comp Physiol B. 2007 Feb;177(2):217-27 - PubMed
  36. Clin Biochem. 1986 Jun;19(3):183-8 - PubMed
  37. BMC Genomics. 2013 Jan 24;14:52 - PubMed
  38. J Comp Physiol B. 2007 Jan;177(1):89-98 - PubMed
  39. J Morphol. 2000 Jun;244(3):203-15 - PubMed
  40. J Comp Physiol B. 2012 Apr;182(3):425-36 - PubMed
  41. Physiol Biochem Zool. 2005 Jul-Aug;78(4):482-90 - PubMed
  42. J Anim Sci. 2006 Oct;84(10):2834-40 - PubMed
  43. J Comp Physiol B. 2006 Aug;176(6):535-45 - PubMed
  44. Vet Pathol. 2009 May;46(3):536-47 - PubMed

Publication Types