Display options
Share it on

Conserv Physiol. 2015 Oct 20;3(1):cov045. doi: 10.1093/conphys/cov045. eCollection 2015.

Oxidative stress, activity behaviour and body mass in captive parrots.

Conservation physiology

S D Larcombe, C A Tregaskes, J Coffey, A E Stevenson, L G Alexander, K E Arnold

Affiliations

  1. Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK.
  2. WALTHAM® Centre for Pet Nutrition, Waltham-on-the-Wolds, Leicestershire LE14 4RT, UK.
  3. Environment Department, University of York, Heslington, York YO10 5DD, UK.

PMID: 27293729 PMCID: PMC4778434 DOI: 10.1093/conphys/cov045

Abstract

Many parrot species are kept in captivity for conservation, but often show poor reproduction, health and survival. These traits are known to be influenced by oxidative stress, the imbalance between the production of reactive oxygen species (ROS) and ability of antioxidant defences to ameliorate ROS damage. In humans, oxidative stress is linked with obesity, lack of exercise and poor nutrition, all of which are common in captive animals. Here, we tested whether small parrots (budgerigars, Melopsittacus undulatus) maintained in typical pet cages and on ad libitum food varied in oxidative profile, behaviour and body mass. Importantly, as with many birds held in captivity, they did not have enough space to engage in extensive free flight. Four types of oxidative damage, single-stranded DNA breaks (low-pH comet assay), alkali-labile sites in DNA (high-pH comet assay), sensitivity of DNA to ROS (H2O2-treated comet assay) and malondialdehyde (a byproduct of lipid peroxidation), were uncorrelated with each other and with plasma concentrations of dietary antioxidants. Without strenuous exercise over 28 days in a relatively small cage, more naturally 'active' individuals had more single-stranded DNA breaks than sedentary birds. High body mass at the start or end of the experiment, coupled with substantial mass gain, were all associated with raised sensitivity of DNA to ROS. Thus, high body mass in these captive birds was associated with oxidative damage. These birds were not lacking dietary antioxidants, because final body mass was positively related to plasma levels of retinol, zeaxanthin and α-tocopherol. Individuals varied widely in activity levels, feeding behaviour, mass gain and oxidative profile despite standardized living conditions. DNA damage is often associated with poor immunocompetence, low fertility and faster ageing. Thus, we have candidate mechanisms for the limited lifespan and fecundity common to many birds kept for conservation purposes.

Keywords: Antioxidants; birds; budgerigars; carotenoids; comet assay; malondialdehyde

References

  1. Mutat Res. 2009 Jan-Feb;681(1):3-12 - PubMed
  2. Ann Clin Biochem. 1991 Sep;28 ( Pt 5):504-8 - PubMed
  3. Br J Nutr. 1996 Aug;76(2):307-17 - PubMed
  4. Toxicology. 2003 Jul 15;189(1-2):41-54 - PubMed
  5. Comp Biochem Physiol C Toxicol Pharmacol. 2010 Apr;151(3):271-7 - PubMed
  6. Neurobiol Aging. 2006 Sep;27(9):1289-97 - PubMed
  7. Vet J. 2012 Jun;192(3):428-34 - PubMed
  8. Comp Biochem Physiol C Toxicol Pharmacol. 2007 Jan;144(4):363-71 - PubMed
  9. Trends Ecol Evol. 2013 Jun;28(6):347-50 - PubMed
  10. Diabetes. 2014 Jul;63(7):2216-8 - PubMed
  11. Mutat Res. 2009 Jan-Feb;681(1):68-79 - PubMed
  12. . 2012 Feb 1;15(1):28-53 - PubMed
  13. Zoo Biol. 2014 Mar-Apr;33(2):89-98 - PubMed
  14. Mar Pollut Bull. 2011 Aug;62(8):1652-60 - PubMed
  15. Eur J Appl Physiol. 2004 May;91(5-6):622-7 - PubMed
  16. Naturwissenschaften. 2010 Oct;97(10):903-13 - PubMed
  17. Can J Physiol Pharmacol. 1998 May;76(5):533-8 - PubMed
  18. J Exp Biol. 2013 Jun 15;216(Pt 12):2213-20 - PubMed
  19. Ecol Lett. 2009 Jan;12(1):75-92 - PubMed
  20. Prog Lipid Res. 2004 May;43(3):200-27 - PubMed
  21. Mol Aspects Med. 1994;15(4):293-376 - PubMed
  22. J Nutr. 1998 Dec;128(12 Suppl):2639S-40S - PubMed
  23. J Exp Biol. 2008 Sep;211(Pt 17):2859-64 - PubMed
  24. J Comp Physiol B. 2011 May;181(4):447-56 - PubMed
  25. Environ Mol Mutagen. 2000;35(3):206-21 - PubMed
  26. PLoS One. 2012;7(5):e36495 - PubMed
  27. J Appl Physiol (1985). 1992 Oct;73(4):1265-72 - PubMed
  28. Biol Lett. 2012 Dec 23;8(6):964-7 - PubMed
  29. J Clin Invest. 2004 Dec;114(12):1752-61 - PubMed
  30. Mutagenesis. 2008 May;23(3):143-51 - PubMed
  31. Environ Mol Mutagen. 2006 Oct;47(8):616-23 - PubMed
  32. Mutat Res. 1995 Apr;346(4):195-202 - PubMed
  33. Am J Clin Nutr. 1992 Jun;55(6 Suppl):1208S-1214S - PubMed
  34. Sports Med. 2005;35(12):1045-62 - PubMed
  35. Ann Clin Lab Sci. 1998 Nov-Dec;28(6):331-46 - PubMed
  36. Comp Biochem Physiol A Mol Integr Physiol. 2006 Feb;143(2):149-54 - PubMed
  37. Cell Metab. 2011 Apr 6;13(4):361-6 - PubMed
  38. Gen Comp Endocrinol. 2009 Jan 1;160(1):76-83 - PubMed
  39. Trends Ecol Evol. 2012 Oct;27(10):570-7 - PubMed
  40. ILAR J. 2010;51(4):409-23 - PubMed
  41. Comp Biochem Physiol B Biochem Mol Biol. 2010 Jan;155(1):49-53 - PubMed

Publication Types