Display options
Share it on

ACS Photonics. 2015 Oct 21;2(10):1482-1488. doi: 10.1021/acsphotonics.5b00369. Epub 2015 Sep 03.

Collective Plasmonic Properties in Few-Layer Gold Nanorod Supercrystals.

ACS photonics

Cyrille Hamon, Sergey M Novikov, Leonardo Scarabelli, Diego M Solís, Thomas Altantzis, Sara Bals, José M Taboada, Fernando Obelleiro, Luis M Liz-Marzán

Affiliations

  1. Bionanoplasmonics Laboratory, CIC biomaGUNE , Paseo de Miramón 182, 20009 Donostia - San Sebastián, Spain.
  2. Department Teoría de la Señal y Comunicaciones, University of Vigo , 36301 Vigo, Spain.
  3. EMAT-University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
  4. Department Tec. Computadoras y Comunicaciones, University of Extremadura , 10003 Cáceres, Spain.
  5. Bionanoplasmonics Laboratory, CIC biomaGUNE, Paseo de Miramón 182, 20009 Donostia - San Sebastián, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain.

PMID: 27294173 PMCID: PMC4898864 DOI: 10.1021/acsphotonics.5b00369

Abstract

Gold nanorod supercrystals have been widely employed for the detection of relevant bioanalytes with detection limits ranging from nano- to picomolar levels, confirming the promising nature of these structures for biosensing. Even though a relationship between the height of the supercrystal (i.e., the number of stacked nanorod layers) and the enhancement factor has been proposed, no systematic study has been reported. In order to tackle this problem, we prepared gold nanorod supercrystals with varying numbers of stacked layers and analyzed them extensively by atomic force microscopy, electron microscopy and surface enhanced Raman scattering. The experimental results were compared to numerical simulations performed on real-size supercrystals composed of thousands of nanorod building blocks. Analysis of the hot spot distribution in the simulated supercrystals showed the presence of standing waves that were distributed at different depths, depending on the number of layers in each supercrystal. On the basis of these theoretical results, we interpreted the experimental data in terms of analyte penetration into the topmost layer only, which indicates that diffusion to the interior of the supercrystals would be crucial if the complete field enhancement produced by the stacked nanorods is to be exploited. We propose that our conclusions will be of high relevance in the design of next generation plasmonic devices.

Keywords: MLFMA; SERS; electron tomography; gold nanorods; method of moments; supercrystal; superlattice; surface enhanced Raman scattering

References

  1. Chem Rev. 2014 Jun 11;114(11):5728-52 - PubMed
  2. Chem Soc Rev. 2014 Jun 7;43(11):3976-91 - PubMed
  3. ACS Nano. 2009 Jan 27;3(1):10-5 - PubMed
  4. Nat Nanotechnol. 2010 Jan;5(1):15-25 - PubMed
  5. Angew Chem Int Ed Engl. 2008;47(50):9685-90 - PubMed
  6. Nat Nanotechnol. 2015 Jan;10(1):25-34 - PubMed
  7. Chem Rev. 2011 Jun 8;111(6):3888-912 - PubMed
  8. Chem Soc Rev. 2012 Apr 7;41(7):2740-79 - PubMed
  9. ACS Nano. 2014 Aug 26;8(8):7559-70 - PubMed
  10. Chem Rev. 2008 Feb;108(2):494-521 - PubMed
  11. Chem Soc Rev. 2014 Apr 7;43(7):2301-23 - PubMed
  12. Angew Chem Int Ed Engl. 2012 Nov 5;51(45):11214-23 - PubMed
  13. Adv Mater. 2012 Sep 18;24(36):4811-41, 5014 - PubMed
  14. Phys Chem Chem Phys. 2013 Apr 21;15(15):5355-63 - PubMed
  15. ACS Nano. 2014 Oct 28;8(10):10694-703 - PubMed
  16. Chem Rev. 2011 Jun 8;111(6):3913-61 - PubMed
  17. Nano Lett. 2012 Sep 12;12(9):5014-9 - PubMed
  18. Nat Mater. 2012 Nov;11(11):930-5 - PubMed
  19. Proc Natl Acad Sci U S A. 2011 May 17;108(20):8157-61 - PubMed
  20. Langmuir. 2011 Sep 20;27(18):11394-400 - PubMed
  21. Chem Soc Rev. 2013 Apr 7;42(7):2679-724 - PubMed
  22. Nat Nanotechnol. 2013 Apr;8(4):247-51 - PubMed
  23. ACS Nano. 2013 Jul 23;7(7):5993-6000 - PubMed
  24. Angew Chem Int Ed Engl. 2014 May 5;53(19):4756-95 - PubMed
  25. ACS Nano. 2012 May 22;6(5):4137-46 - PubMed
  26. Chem Rev. 2005 Apr;105(4):1025-102 - PubMed
  27. ACS Nano. 2012 Apr 24;6(4):3339-45 - PubMed
  28. Adv Mater. 2009 Dec 28;21(48):4880-910 - PubMed
  29. ACS Nano. 2012 Mar 27;6(3):2804-17 - PubMed

Publication Types

Grant support