Display options
Share it on

J Phys Chem Lett. 2016 Jul 21;7(14):2722-9. doi: 10.1021/acs.jpclett.6b00946. Epub 2016 Jul 06.

Valence and Conduction Band Densities of States of Metal Halide Perovskites: A Combined Experimental-Theoretical Study.

The journal of physical chemistry letters

James Endres, David A Egger, Michael Kulbak, Ross A Kerner, Lianfeng Zhao, Scott H Silver, Gary Hodes, Barry P Rand, David Cahen, Leeor Kronik, Antoine Kahn

Affiliations

  1. Department of Electrical Engineering, Princeton University , Princeton, New Jersey 08544, United States.
  2. Department of Materials and Interfaces, Weizmann Institute of Science , Rehovoth, 76100, Israel.

PMID: 27364125 PMCID: PMC4959026 DOI: 10.1021/acs.jpclett.6b00946

Abstract

We report valence and conduction band densities of states measured via ultraviolet and inverse photoemission spectroscopies on three metal halide perovskites, specifically methylammonium lead iodide and bromide and cesium lead bromide (MAPbI3, MAPbBr3, CsPbBr3), grown at two different institutions on different substrates. These are compared with theoretical densities of states (DOS) calculated via density functional theory. The qualitative agreement achieved between experiment and theory leads to the identification of valence and conduction band spectral features, and allows a precise determination of the position of the band edges, ionization energy and electron affinity of the materials. The comparison reveals an unusually low DOS at the valence band maximum (VBM) of these compounds, which confirms and generalizes previous predictions of strong band dispersion and low DOS at the MAPbI3 VBM. This low DOS calls for special attention when using electron spectroscopy to determine the frontier electronic states of lead halide perovskites.

References

  1. Phys Chem Chem Phys. 2015 Apr 14;17(14):9394-409 - PubMed
  2. Nat Commun. 2014 Apr 08;5:3586 - PubMed
  3. Acc Chem Res. 2016 Mar 15;49(3):573-81 - PubMed
  4. Nat Commun. 2014 Mar 11;5:3461 - PubMed
  5. Phys Rev Lett. 1996 Oct 28;77(18):3865-3868 - PubMed
  6. Phys Rev Lett. 2009 Feb 20;102(7):073005 - PubMed
  7. J Phys Chem Lett. 2014 Aug 21;5(16):2903-9 - PubMed
  8. J Am Chem Soc. 2009 May 6;131(17):6050-1 - PubMed
  9. J Phys Chem Lett. 2014 Aug 7;5(15):2728-33 - PubMed
  10. Acc Chem Res. 2016 Feb 16;49(2):347-54 - PubMed
  11. Adv Mater. 2016 May;28(17):3406-10 - PubMed
  12. Adv Mater. 2016 Jan 20;28(3):553-9 - PubMed
  13. J Chem Phys. 2005 Mar 22;122(12):124508 - PubMed
  14. Adv Mater. 2014 Jul 16;26(27):4653-8 - PubMed
  15. Nano Lett. 2015 May 13;15(5):3103-8 - PubMed
  16. Phys Rev B Condens Matter. 1986 Oct 15;34(8):5390-5413 - PubMed
  17. ACS Appl Mater Interfaces. 2015 Jun 24;7(24):13440-4 - PubMed
  18. J Phys Chem Lett. 2016 Jan 7;7(1):167-72 - PubMed
  19. ACS Nano. 2016 Mar 22;10(3):3302-11 - PubMed
  20. J Phys Chem Lett. 2014 Feb 20;5(4):648-53 - PubMed
  21. ACS Appl Mater Interfaces. 2016 May 11;8(18):11526-31 - PubMed
  22. Phys Chem Chem Phys. 2014 Oct 28;16(40):22122-30 - PubMed
  23. J Chem Theory Comput. 2012 Apr 10;8(4):1503-13 - PubMed
  24. Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186 - PubMed
  25. Top Curr Chem. 2014;347:137-91 - PubMed

Publication Types