Display options
Share it on

Nat Nanotechnol. 2016 Oct;11(10):885-889. doi: 10.1038/nnano.2016.114. Epub 2016 Jul 11.

Role of the electron spin in determining the coherence of the nuclear spins in a quantum dot.

Nature nanotechnology

Gunter Wüst, Mathieu Munsch, Franziska Maier, Andreas V Kuhlmann, Arne Ludwig, Andreas D Wieck, Daniel Loss, Martino Poggio, Richard J Warburton

Affiliations

  1. Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland.
  2. Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, D-44780 Bochum, Germany.

PMID: 27428274 DOI: 10.1038/nnano.2016.114

Abstract

A huge effort is underway to develop semiconductor nanostructures as low-noise qubits. A key source of dephasing for an electron spin qubit in GaAs and in naturally occurring Si is the nuclear spin bath. The electron spin is coupled to each nuclear spin by the hyperfine interaction. The same interaction also couples two remote nuclear spins via a common coupling to the delocalized electron. It has been suggested that this interaction limits both electron and nuclear spin coherence, but experimental proof is lacking. We show that the nuclear spin decoherence time decreases by two orders of magnitude on occupying an empty quantum dot with a single electron, recovering to its original value for two electrons. In the case of one electron, agreement with a model calculation verifies the hypothesis of an electron-mediated nuclear spin-nuclear spin coupling. The results establish a framework to understand the main features of this complex interaction in semiconductor nanostructures.

References

  1. Phys Rev Lett. 2008 Nov 14;101(20):207601 - PubMed
  2. Phys Rev Lett. 2010 Jun 11;104(23):236802 - PubMed
  3. Nat Commun. 2015 Feb 23;6:6348 - PubMed
  4. Science. 2008 Aug 8;321(5890):817-21 - PubMed
  5. Nat Commun. 2014 Oct 08;5:5156 - PubMed
  6. Phys Rev Lett. 2007 Feb 16;98(7):077601 - PubMed
  7. Science. 2005 Sep 30;309(5744):2180-4 - PubMed
  8. Nat Mater. 2013 Jun;12(6):483-93 - PubMed
  9. Phys Rev Lett. 2002 May 6;88(18):186802 - PubMed
  10. Rev Sci Instrum. 2013 Jul;84(7):073905 - PubMed
  11. Nat Nanotechnol. 2014 Sep;9(9):671-5 - PubMed
  12. Phys Rev Lett. 2013 Jan 25;110(4):040405 - PubMed
  13. Nature. 2000 Jun 22;405(6789):926-9 - PubMed
  14. Phys Rev Lett. 2007 Aug 3;99(5):056804 - PubMed
  15. Phys Rev Lett. 2011 Jan 28;106(4):046802 - PubMed
  16. Nat Nanotechnol. 2012 Oct;7(10):646-50 - PubMed
  17. Phys Rev Lett. 2005 May 20;94(19):197402 - PubMed
  18. Nat Mater. 2013 Jun;12(6):494-504 - PubMed
  19. Phys Rev Lett. 2009 Feb 6;102(5):057601 - PubMed

Publication Types