Display options
Share it on

Nano Lett. 2016 Aug 10;16(8):5109-13. doi: 10.1021/acs.nanolett.6b02041. Epub 2016 Jul 22.

Coherent and Incoherent Coupling Dynamics between Neutral and Charged Excitons in Monolayer MoSe2.

Nano letters

Kai Hao, Lixiang Xu, Philipp Nagler, Akshay Singh, Kha Tran, Chandriker Kavir Dass, Christian Schüller, Tobias Korn, Xiaoqin Li, Galan Moody

Affiliations

  1. Department of Physics and Center for Complex Quantum Systems, University of Texas at Austin , Austin, Texas 78712, United States.
  2. Department of Physics, University of Regensburg , Regensburg 93040, Germany.
  3. National Institute of Standards & Technology , Boulder, Colorado 80305, United States.

PMID: 27428509 PMCID: PMC5593425 DOI: 10.1021/acs.nanolett.6b02041

Abstract

The optical properties of semiconducting transition metal dichalcogenides are dominated by both neutral excitons (electron-hole pairs) and charged excitons (trions) that are stable even at room temperature. While trions directly influence charge transport properties in optoelectronic devices, excitons may be relevant through exciton-trion coupling and conversion phenomena. In this work, we reveal the coherent and incoherent nature of exciton-trion coupling and the relevant time scales in monolayer MoSe2 using optical two-dimensional coherent spectroscopy. Coherent interaction between excitons and trions is definitively identified as quantum beating of cross peaks in the spectra that persists for a few hundred femtoseconds. For longer times up to 10 ps, surprisingly, the relative intensity of the cross peaks increases, which is attributed to incoherent energy transfer likely due to phonon-assisted up-conversion and down-conversion processes that are efficient even at cryogenic temperature.

Keywords: Quantum beats; coherent coupling; exciton; trion; two-dimensional materials

References

  1. Phys Rev B Condens Matter. 1993 Dec 15;48(23):17418-17426 - PubMed
  2. Phys Rev B Condens Matter. 1993 Aug 15;48(8):5720-5723 - PubMed
  3. Phys Rev Lett. 1989 Jun 12;62(24):2813-2816 - PubMed
  4. Phys Rev Lett. 1990 Apr 9;64(15):1801-1804 - PubMed
  5. Phys Rev Lett. 1991 May 20;66(20):2593-2596 - PubMed
  6. Phys Rev Lett. 1992 Dec 21;69(25):3631-3634 - PubMed
  7. Phys Rev Lett. 1995 Aug 21;75(8):1499-1502 - PubMed
  8. Nature. 2007 Apr 12;446(7137):782-6 - PubMed
  9. Rev Sci Instrum. 2009 Jul;80(7):073108 - PubMed
  10. Nano Lett. 2010 Apr 14;10(4):1271-5 - PubMed
  11. Phys Rev Lett. 2010 Mar 19;104(11):117401 - PubMed
  12. Opt Express. 2010 Aug 16;18(17):17699-708 - PubMed
  13. Phys Rev Lett. 2010 Sep 24;105(13):136805 - PubMed
  14. J Phys Condens Matter. 2007 Jul 25;19(29):295201 - PubMed
  15. Phys Rev Lett. 2012 May 11;108(19):193201 - PubMed
  16. Phys Rev Lett. 2012 May 11;108(19):196802 - PubMed
  17. Nat Nanotechnol. 2012 Nov;7(11):699-712 - PubMed
  18. Nat Mater. 2013 Mar;12(3):207-11 - PubMed
  19. Nature. 2013 Jan 24;493(7433):504-8 - PubMed
  20. Nat Commun. 2013;4:1474 - PubMed
  21. Opt Express. 2013 Feb 25;21(4):4908-16 - PubMed
  22. Nat Nanotechnol. 2013 Sep;8(9):634-8 - PubMed
  23. ACS Nano. 2014 Feb 25;8(2):1102-20 - PubMed
  24. Phys Rev Lett. 2014 Jan 31;112(4):046402 - PubMed
  25. Phys Rev Lett. 2014 Mar 7;112(9):097401 - PubMed
  26. Opt Express. 2014 Mar 24;22(6):6719-33 - PubMed
  27. Phys Rev Lett. 2014 Aug 15;113(7):076802 - PubMed
  28. Annu Rev Phys Chem. 2015 Apr;66:69-96 - PubMed
  29. Sci Rep. 2015 Mar 18;5:9218 - PubMed
  30. J Chem Phys. 2015 Jun 7;142(21):212422 - PubMed
  31. Nat Mater. 2015 Sep;14(9):889-93 - PubMed
  32. Nat Commun. 2015 Sep 18;6:8315 - PubMed
  33. Phys Rev Lett. 2016 Mar 25;116(12):127402 - PubMed
  34. Phys Rev Lett. 2016 Apr 15;116(15):157401 - PubMed
  35. J Opt Soc Am B. 2016 Jul 1;33(7):C39-C49 - PubMed
  36. Phys Rev A. 1994 Apr;49(4):3114-3118 - PubMed

Publication Types

Grant support