Display options
Share it on

Epigenetics Chromatin. 2016 Jun 21;9:24. doi: 10.1186/s13072-016-0072-6. eCollection 2016.

Comprehensive analysis of histone post-translational modifications in mouse and human male germ cells.

Epigenetics & chromatin

Lacey J Luense, Xiaoshi Wang, Samantha B Schon, Angela H Weller, Enrique Lin Shiao, Jessica M Bryant, Marisa S Bartolomei, Christos Coutifaris, Benjamin A Garcia, Shelley L Berger

Affiliations

  1. Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104 USA.
  2. Epigenetics Program, University of Pennsylvania, Philadelphia, PA 19104 USA.
  3. Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104 USA.
  4. Department of Reproductive Endocrinology and Infertility, Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 USA.
  5. Biomedical Sciences Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA.
  6. Institute Pasteur, 75724 Paris, France.

PMID: 27330565 PMCID: PMC4915177 DOI: 10.1186/s13072-016-0072-6

Abstract

BACKGROUND: During the process of spermatogenesis, male germ cells undergo dramatic chromatin reorganization, whereby most histones are replaced by protamines, as part of the pathway to compact the genome into the small nuclear volume of the sperm head. Remarkably, approximately 90 % (human) to 95 % (mouse) of histones are evicted during the process. An intriguing hypothesis is that post-translational modifications (PTMs) decorating histones play a critical role in epigenetic regulation of spermatogenesis and embryonic development following fertilization. Although a number of specific histone PTMs have been individually studied during spermatogenesis and in mature mouse and human sperm, to date, there is a paucity of comprehensive identification of histone PTMs and their dynamics during this process.

RESULTS: Here we report systematic investigation of sperm histone PTMs and their dynamics during spermatogenesis. We utilized "bottom-up" nanoliquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) to identify histone PTMs and to determine their relative abundance in distinct stages of mouse spermatogenesis (meiotic, round spermatids, elongating/condensing spermatids, and mature sperm) and in human sperm. We detected peptides and histone PTMs from all four canonical histones (H2A, H2B, H3, and H4), the linker histone H1, and multiple histone isoforms of H1, H2A, H2B, and H3 in cells from all stages of mouse spermatogenesis and in mouse sperm. We found strong conservation of histone PTMs for histone H3 and H4 between mouse and human sperm; however, little conservation was observed between H1, H2A, and H2B. Importantly, across eight individual normozoospermic human semen samples, little variation was observed in the relative abundance of nearly all histone PTMs.

CONCLUSION: In summary, we report the first comprehensive and unbiased analysis of histone PTMs at multiple time points during mouse spermatogenesis and in mature mouse and human sperm. Furthermore, our results suggest a largely uniform histone PTM signature in sperm from individual humans.

Keywords: Epigenetics; Fertility; Histone; Male germ cells; Paternal epigenetics; Post-translational modifications; Sperm; Spermiogenesis; Testes

References

  1. Mol Cell Proteomics. 2015 Jun;14(6):1696-707 - PubMed
  2. Genome Res. 2014 Jan;24(1):52-63 - PubMed
  3. Nat Protoc. 2007;2(6):1445-57 - PubMed
  4. Clin Epigenetics. 2015 Mar 19;7:31 - PubMed
  5. Hum Reprod Update. 2007 May-Jun;13(3):313-27 - PubMed
  6. Cell. 2011 Sep 16;146(6):1016-28 - PubMed
  7. Epigenetics Chromatin. 2014 Jan 20;7(1):2 - PubMed
  8. J Mol Biol. 2014 Oct 9;426(20):3342-9 - PubMed
  9. J Proteome Res. 2014 Oct 3;13(10):4470-8 - PubMed
  10. Hum Reprod Update. 2010 May-Jun;16(3):231-45 - PubMed
  11. Int J Androl. 2011 Jun;34(3):256-67 - PubMed
  12. Eur J Biochem. 2004 Sep;271(17):3459-69 - PubMed
  13. Nat Genet. 2001 May;28(1):82-6 - PubMed
  14. Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):16061-6 - PubMed
  15. Fertil Steril. 2012 Feb;97(2):267-74 - PubMed
  16. Mol Reprod Dev. 2014 Feb;81(2):160-70 - PubMed
  17. Eur J Cell Biol. 2000 Dec;79(12):950-60 - PubMed
  18. Cell. 2006 Apr 21;125(2):315-26 - PubMed
  19. J Androl. 2006 Nov-Dec;27(6):890-8 - PubMed
  20. PLoS Genet. 2015 Sep 14;11(9):e1005512 - PubMed
  21. Nat Struct Mol Biol. 2011 Dec 04;19(1):25-30 - PubMed
  22. Nat Struct Mol Biol. 2010 Jun;17(6):679-87 - PubMed
  23. J Proteomics. 2015 Oct 14;128:218-30 - PubMed
  24. Mol Cell. 2004 Nov 19;16(4):641-53 - PubMed
  25. Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11827-32 - PubMed
  26. Methods Enzymol. 2012;512:3-28 - PubMed
  27. Cell. 2007 Feb 23;128(4):693-705 - PubMed
  28. J Androl. 2006 May-Jun;27(3):414-20 - PubMed
  29. Mol Hum Reprod. 2014 Nov;20(11):1041-53 - PubMed
  30. Hum Reprod. 2011 Sep;26(9):2558-69 - PubMed
  31. Nature. 2005 Nov 17;438(7066):374-8 - PubMed
  32. Science. 1974 May 24;184(4139):868-71 - PubMed
  33. Nat Struct Mol Biol. 2007 Nov;14(11):1008-16 - PubMed
  34. Nat Struct Mol Biol. 2013 Jul;20(7):868-75 - PubMed
  35. Cold Spring Harb Perspect Biol. 2015 Sep 01;7(9):a025064 - PubMed
  36. Mol Cell Proteomics. 2014 Sep;13(9):2450-66 - PubMed
  37. Biochim Biophys Acta. 2014 Mar;1839(3):155-68 - PubMed
  38. J Vis Exp. 2013 Oct 09;(80):null - PubMed
  39. Dev Cell. 2014 Jul 14;30(1):6-8 - PubMed
  40. BMC Dev Biol. 2008 Mar 31;8:34 - PubMed
  41. Hum Mol Genet. 2014 Dec 1;23(23):6246-59 - PubMed
  42. Genome Res. 2009 Aug;19(8):1338-49 - PubMed
  43. Nature. 2009 Jul 23;460(7254):473-8 - PubMed
  44. Lancet. 1987 Oct 3;2(8562):806-7 - PubMed
  45. J Biol Chem. 2007 Mar 9;282(10):7641-55 - PubMed
  46. Epigenetics. 2012 Sep;7(9):1057-70 - PubMed
  47. Science. 2004 Nov 26;306(5701):1574-7 - PubMed
  48. Dev Cell. 2014 Jul 14;30(1):23-35 - PubMed
  49. J Androl. 2001 Jul-Aug;22(4):604-10 - PubMed
  50. Nat Commun. 2014 Dec 18;5:5868 - PubMed
  51. Hum Mol Genet. 2012 Oct 15;21(20):4460-72 - PubMed
  52. Fertil Steril. 1988 Jan;49(1):112-7 - PubMed
  53. Reprod Fertil Dev. 2011;23(8):997-1011 - PubMed
  54. Andrology. 2014 May;2(3):326-38 - PubMed
  55. Andrologia. 2002 Dec;34(6):384-90 - PubMed
  56. J Cell Biol. 2007 Jan 29;176(3):283-94 - PubMed
  57. Nat Rev Genet. 2008 Feb;9(2):129-40 - PubMed

Publication Types

Grant support