Display options
Share it on

Sci Rep. 2016 Jun 14;6:27926. doi: 10.1038/srep27926.

Two distinct superconducting phases in LiFeAs.

Scientific reports

P K Nag, R Schlegel, D Baumann, H-J Grafe, R Beck, S Wurmehl, B Büchner, C Hess

Affiliations

  1. IFW Dresden, Institute for Solid State Research, 01171 Dresden, Germany.
  2. Institute for Solid State Physics, TU Dresden, 01069 Dresden, Germany.
  3. Center for Transport and Devices, TU Dresden, 01069 Dresden, Germany.

PMID: 27297474 PMCID: PMC4906386 DOI: 10.1038/srep27926

Abstract

A non-trivial temperature evolution of superconductivity including a temperature-induced phase transition between two superconducting phases or even a time-reversal symmetry breaking order parameter is in principle expected in multiband superconductors such as iron-pnictides. Here we present scanning tunnelling spectroscopy data of LiFeAs which reveal two distinct superconducting phases: at = 18 K a partial superconducting gap opens, evidenced by subtle, yet clear features in the tunnelling spectra, i.e. particle-hole symmetric coherence peak and dip-hump structures. At Tc = 16 K, these features substantiate dramatically and become characteristic of full superconductivity. Remarkably, the distance between the dip-hump structures and the coherence peaks remains practically constant in the whole temperature regimeT ≤ . This rules out the connection of the dip-hump structures to an antiferromagnetic spin resonance.

References

  1. Phys Rev Lett. 2008 Sep 5;101(10):107006 - PubMed
  2. Phys Rev Lett. 2014 Feb 7;112(5):057002 - PubMed
  3. Phys Rev Lett. 2010 Aug 6;105(6):067002 - PubMed
  4. Phys Rev Lett. 2008 Sep 12;101(11):117004 - PubMed
  5. Science. 2012 May 4;336(6081):563-7 - PubMed
  6. J Phys Condens Matter. 2013 Apr 24;25(16):162204 - PubMed
  7. J Am Chem Soc. 2008 Mar 19;130(11):3296-7 - PubMed
  8. Chem Commun (Camb). 2008 Dec 7;(45):5918-20 - PubMed
  9. J Am Chem Soc. 2010 Aug 4;132(30):10467-76 - PubMed
  10. Phys Rev Lett. 2012 Mar 23;108(12):127001 - PubMed
  11. Phys Rev Lett. 2012 Mar 16;108(11):117001 - PubMed
  12. Phys Rev Lett. 2012 Jan 27;108(4):047002 - PubMed
  13. Rev Sci Instrum. 2014 Jan;85(1):013706 - PubMed
  14. Phys Rev Lett. 2012 Jan 20;108(3):037002 - PubMed
  15. Phys Rev Lett. 2012 Aug 24;109(8):087002 - PubMed
  16. Phys Rev Lett. 2012 Jun 1;108(22):227002 - PubMed
  17. Phys Rev Lett. 2013 Jan 4;110(1):017006 - PubMed
  18. Nat Mater. 2009 Apr;8(4):305-9 - PubMed
  19. Rev Sci Instrum. 2007 Jan;78(1):013705 - PubMed

Publication Types