Display options
Share it on

NPJ Schizophr. 2016 Jun 29;2:16022. doi: 10.1038/npjschz.2016.22. eCollection 2016.

Molecular evidence of synaptic pathology in the CA1 region in schizophrenia.

NPJ schizophrenia

Natalie Matosin, Francesca Fernandez-Enright, Jeremy S Lum, Martin Engel, Jessica L Andrews, Nils C Gassen, Klaus V Wagner, Mathias V Schmidt, Kelly A Newell

Affiliations

  1. Departments of Translational Research in Psychiatry and Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; Departments of Science, Medicine and Health, and Social Sciences, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia; Department of Medicine, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia.
  2. Departments of Science, Medicine and Health, and Social Sciences, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia; Department of Health Science, School of Science, Australian Catholic University, Brisbane, QLD, Australia.
  3. Departments of Science, Medicine and Health, and Social Sciences, Illawarra Health and Medical Research Institute, University of Wollongong , Wollongong, NSW, Australia.
  4. Departments of Translational Research in Psychiatry and Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry , Munich, Germany.

PMID: 27430010 PMCID: PMC4944906 DOI: 10.1038/npjschz.2016.22

Abstract

Alterations of postsynaptic density (PSD)95-complex proteins in schizophrenia ostensibly induce deficits in synaptic plasticity, the molecular process underlying cognitive functions. Although some PSD95-complex proteins have been previously examined in the hippocampus in schizophrenia, the status of other equally important molecules is unclear. This is especially true in the cornu ammonis (CA)1 hippocampal subfield, a region that is critically involved in the pathophysiology of the illness. We thus performed a quantitative immunoblot experiment to examine PSD95 and several of its associated proteins in the CA1 region, using post mortem brain samples derived from schizophrenia subjects with age-, sex-, and post mortem interval-matched controls (n=20/group). Our results indicate a substantial reduction in PSD95 protein expression (-61.8%). Further analysis showed additional alterations to the scaffold protein Homer1 (Homer1a: +42.9%, Homer1b/c: -24.6%), with a twofold reduction in the ratio of Homer1b/c:Homer1a isoforms (P=0.011). Metabotropic glutamate receptor 1 (mGluR1) protein levels were significantly reduced (-32.7%), and Preso, a protein that supports interactions between Homer1 or PSD95 with mGluR1, was elevated (+83.3%). Significant reduction in synaptophysin (-27.8%) was also detected, which is a validated marker of synaptic density. These findings support the presence of extensive molecular abnormalities to PSD95 and several of its associated proteins in the CA1 region in schizophrenia, offering a small but significant step toward understanding how proteins in the PSD are altered in the schizophrenia brain, and their relevance to overall hippocampal and cognitive dysfunction in the illness.

References

  1. Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):4012-7 - PubMed
  2. Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12587-92 - PubMed
  3. Psychiatry Res. 2015 Jun 30;232(3):219-25 - PubMed
  4. Neuroscience. 2003;119(4):979-90 - PubMed
  5. Arch Gen Psychiatry. 1995 Aug;52(8):657-67 - PubMed
  6. Am J Psychiatry. 2015 Apr;172(4):373-82 - PubMed
  7. Schizophr Res. 2016 Nov;177(1-3):10-17 - PubMed
  8. Transl Psychiatry. 2014 Jan 21;4:e348 - PubMed
  9. Brain Res. 2007 Jan 5;1127(1):108-18 - PubMed
  10. Age (Dordr). 2013 Oct;35(5):1799-808 - PubMed
  11. Am J Psychiatry. 2010 Dec;167(12 ):1489-98 - PubMed
  12. Biol Psychiatry. 2008 Jul 1;64(1):18-25 - PubMed
  13. Neuroreport. 2009 Jul 15;20(11):1019-22 - PubMed
  14. Schizophr Res. 2005 Dec 15;80(2-3):323-30 - PubMed
  15. Int J Neuropsychopharmacol. 2006 Aug;9(4):457-63 - PubMed
  16. Neuron. 2008 Dec 26;60(6):1010-21 - PubMed
  17. Nat Neurosci. 2012 Jun;15(6):836-44 - PubMed
  18. J Neurosci. 2011 Apr 27;31(17):6329-38 - PubMed
  19. Acta Neuropathol. 2009 Apr;117(4):395-407 - PubMed
  20. Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):4176-81 - PubMed
  21. Mol Psychiatry. 2006 Aug;11(8):737-47, 705 - PubMed
  22. Am J Psychiatry. 2003 Jun;160(6):1100-9 - PubMed
  23. Schizophr Res. 2011 Sep;131(1-3):165-73 - PubMed
  24. J Biol Chem. 2003 Apr 25;278(17 ):14762-8 - PubMed
  25. Nat Rev Neurosci. 2006 Sep;7(9):697-709 - PubMed
  26. Brain. 2011 Aug;134(Pt 8):2408-21 - PubMed
  27. Brain Res Mol Brain Res. 2004 Feb 5;121(1-2):60-9 - PubMed
  28. Ann N Y Acad Sci. 2015 Mar;1338:38-57 - PubMed
  29. Curr Opin Neurobiol. 2012 Aug;22(4):704-8 - PubMed
  30. J Histochem Cytochem. 1990 Jun;38(6):837-44 - PubMed
  31. Neuron. 1999 Jul;23 (3):583-92 - PubMed
  32. Psychiatry Res. 2010 Sep 30;183(3):187-94 - PubMed
  33. Arch Gen Psychiatry. 2002 Jun;59(6):521-9 - PubMed
  34. Neuropsychopharmacology. 2014 Jan;39(1):65-87 - PubMed
  35. Arch Gen Psychiatry. 2009 Sep;66(9):938-46 - PubMed
  36. Eur Arch Psychiatry Clin Neurosci. 1992;241(4):195-200 - PubMed
  37. J Neurochem. 2006 Aug;98(4):1114-25 - PubMed
  38. Synapse. 2005 Sep 1;57(3):123-31 - PubMed
  39. Biochem Biophys Res Commun. 2002 Aug 23;296(3):523-9 - PubMed
  40. Arch Gen Psychiatry. 1991 Nov;48(11):1002-8 - PubMed
  41. Aust N Z J Psychiatry. 2010 Jan;44(1):59-70 - PubMed
  42. Acta Neuropathol. 2015 Jul;130(1):119-29 - PubMed
  43. Am J Psychiatry. 2004 Oct;161(10):1848-55 - PubMed
  44. Schizophr Res. 2015 Sep;167(1-3):4-11 - PubMed
  45. J Neurosci. 2002 Dec 1;22(23 ):10067-71 - PubMed
  46. Brain. 2013 Mar;136(Pt 3):804-14 - PubMed
  47. Front Neuroanat. 2014 Jul 09;8:64 - PubMed
  48. Schizophr Res. 2002 May 1;55(1-2):1-10 - PubMed
  49. J Neurochem. 2002 Nov;83(4):797-806 - PubMed
  50. J Neurosci. 2002 Feb 15;22(4):1280-9 - PubMed
  51. Neuropsychopharmacology. 2003 Oct;28(10):1831-9 - PubMed
  52. Biol Psychiatry. 1998 Jul 15;44(2):88-97 - PubMed
  53. Nat Neurosci. 1998 Aug;1(4):318-23 - PubMed
  54. Mol Neurobiol. 2014 Feb;49(1):484-511 - PubMed
  55. Prog Neuropsychopharmacol Biol Psychiatry. 2009 Feb 1;33(1):70-5 - PubMed
  56. Schizophr Res. 2015 Aug;166(1-3):212-8 - PubMed
  57. Hippocampus. 2004;14(2):193-215 - PubMed
  58. J Neurosci. 2009 Oct 14;29(41):12845-54 - PubMed
  59. J Neurosci. 2008 Dec 31;28(53):14546-56 - PubMed
  60. Trends Neurosci. 2008 May;31(5):234-42 - PubMed
  61. Neuropsychopharmacology. 2004 Jul;29(7):1353-62 - PubMed
  62. Neuroreport. 2000 Sep 28;11(14):3133-7 - PubMed
  63. Am J Psychiatry. 2002 May;159(5):821-8 - PubMed
  64. Am J Psychiatry. 2010 Oct;167(10):1178-93 - PubMed
  65. Curr Opin Neurobiol. 2006 Jun;16(3):251-7 - PubMed
  66. J Neurosci. 2014 Dec 10;34(50):16698-712 - PubMed
  67. Neuron. 2013 May 22;78(4):615-22 - PubMed
  68. Nat Rev Neurosci. 2004 Oct;5(10):771-81 - PubMed
  69. Schizophr Res. 2011 Aug;130(1-3):260-5 - PubMed
  70. Neuroimage. 2004 Apr;21(4):1563-75 - PubMed
  71. Neuropsychopharmacology. 2008 Aug;33(9):2175-86 - PubMed
  72. Biol Psychiatry. 2015 Jan 1;77(1):52-8 - PubMed
  73. J Neurosci. 2008 Aug 20;28(34):8560-7 - PubMed
  74. J Neurosci. 2001 Aug 15;21(16):5925-34 - PubMed

Publication Types

Grant support