Display options
Share it on

Beilstein J Nanotechnol. 2016 Apr 25;7:613-29. doi: 10.3762/bjnano.7.54. eCollection 2016.

Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies.

Beilstein journal of nanotechnology

Claudia Koch, Fabian J Eber, Carlos Azucena, Alexander Förste, Stefan Walheim, Thomas Schimmel, Alexander M Bittner, Holger Jeske, Hartmut Gliemann, Sabine Eiben, Fania C Geiger, Christina Wege

Affiliations

  1. Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, D-70550, Germany.
  2. Institute of Functional Interfaces (IFG), Chemistry of Oxidic and Organic Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Karlsruhe, D-76344, Germany.
  3. Institute of Nanotechnology (INT) and Karlsruhe Institute of Applied Physics (IAP) and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), INT: Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, D-76344, Germany, and IAP/CFN: Wolfgang-Gaede-Straße 1, Karlsruhe, D-76131 Germany.
  4. CIC Nanogune, Tolosa Hiribidea 76, E-20018 Donostia-San Sebastián, Spain, and Ikerbasque, Maria Díaz de Haro 3, E-48013 Bilbao, Spain.

PMID: 27335751 PMCID: PMC4901926 DOI: 10.3762/bjnano.7.54

Abstract

The rod-shaped nanoparticles of the widespread plant pathogen tobacco mosaic virus (TMV) have been a matter of intense debates and cutting-edge research for more than a hundred years. During the late 19th century, their behavior in filtration tests applied to the agent causing the 'plant mosaic disease' eventually led to the discrimination of viruses from bacteria. Thereafter, they promoted the development of biophysical cornerstone techniques such as electron microscopy and ultracentrifugation. Since the 1950s, the robust, helically arranged nucleoprotein complexes consisting of a single RNA and more than 2100 identical coat protein subunits have enabled molecular studies which have pioneered the understanding of viral replication and self-assembly, and elucidated major aspects of virus-host interplay, which can lead to agronomically relevant diseases. However, during the last decades, TMV has acquired a new reputation as a well-defined high-yield nanotemplate with multivalent protein surfaces, allowing for an ordered high-density presentation of multiple active molecules or synthetic compounds. Amino acid side chains exposed on the viral coat may be tailored genetically or biochemically to meet the demands for selective conjugation reactions, or to directly engineer novel functionality on TMV-derived nanosticks. The natural TMV size (length: 300 nm) in combination with functional ligands such as peptides, enzymes, dyes, drugs or inorganic materials is advantageous for applications ranging from biomedical imaging and therapy approaches over surface enlargement of battery electrodes to the immobilization of enzymes. TMV building blocks are also amenable to external control of in vitro assembly and re-organization into technically expedient new shapes or arrays, which bears a unique potential for the development of 'smart' functional 3D structures. Among those, materials designed for enzyme-based biodetection layouts, which are routinely applied, e.g., for monitoring blood sugar concentrations, might profit particularly from the presence of TMV rods: Their surfaces were recently shown to stabilize enzymatic activities upon repeated consecutive uses and over several weeks. This review gives the reader a ride through strikingly diverse achievements obtained with TMV-based particles, compares them to the progress with related viruses, and focuses on latest results revealing special advantages for enzyme-based biosensing formats, which might be of high interest for diagnostics employing 'systems-on-a-chip'.

Keywords: biotemplate; enzyme biosensor; nanotechnology; tobacco mosaic virus; virus-like particles

References

  1. Chemistry. 2009;15(5):1107-14 - PubMed
  2. Nat New Biol. 1971 Jan 13;229(2):47-50 - PubMed
  3. Curr Opin Biotechnol. 2010 Aug;21(4):426-38 - PubMed
  4. Arch Virol. 2008;153(6):1109-23 - PubMed
  5. Vaccine. 2012 Dec 17;31(1):58-83 - PubMed
  6. Langmuir. 2008 Nov 4;24(21):12483-8 - PubMed
  7. Virology. 2006 May 10;348(2):475-88 - PubMed
  8. Expert Rev Vaccines. 2007 Jun;6(3):381-90 - PubMed
  9. Curr Opin Biotechnol. 2011 Dec;22(6):901-8 - PubMed
  10. J Gen Virol. 1984 Feb;65 ( Pt 2):253-79 - PubMed
  11. Small. 2015 Jun 3;11(21):2505-9 - PubMed
  12. J Mol Biol. 1974 Jan 25;82(3):343-53 - PubMed
  13. J Am Chem Soc. 2005 Mar 23;127(11):3718-23 - PubMed
  14. Proc Natl Acad Sci U S A. 1955 Oct 15;41(10):690-8 - PubMed
  15. Langmuir. 2007 Feb 27;23(5):2663-7 - PubMed
  16. Chem Soc Rev. 2012 Sep 21;41(18):6178-94 - PubMed
  17. Biotechnol J. 2013 Feb;8(2):237-46 - PubMed
  18. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5688-92 - PubMed
  19. Nat Nanotechnol. 2007 Apr;2(4):226-9 - PubMed
  20. Langmuir. 2010 Mar 2;26(5):3670-7 - PubMed
  21. Int J Mol Sci. 2013 Jan 10;14(1):1232-77 - PubMed
  22. Vaccine. 2006 Sep 29;24(40-41):6414-23 - PubMed
  23. Org Biomol Chem. 2008 Dec 7;6(23):4315-8 - PubMed
  24. Adv Biophys. 1990;26:157-85 - PubMed
  25. Angew Chem Int Ed Engl. 2007;46(39):7378-82 - PubMed
  26. Bioconjug Chem. 2004 Jul-Aug;15(4):807-13 - PubMed
  27. Curr Opin Biotechnol. 2016 Feb;37:201-206 - PubMed
  28. J Virol Methods. 2013 May;189(2):328-40 - PubMed
  29. Philos Trans R Soc Lond B Biol Sci. 1999 Mar 29;354(1383):537-50 - PubMed
  30. Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17678-83 - PubMed
  31. Adv Mater. 2011 Nov 9;23(42):4918-22 - PubMed
  32. Curr Top Microbiol Immunol. 2009;331:v-vi - PubMed
  33. Annu Rev Phytopathol. 2008;46:361-84 - PubMed
  34. Subcell Biochem. 2013;68:667-702 - PubMed
  35. Nanoscale. 2012 Sep 21;4(18):5640-5 - PubMed
  36. Trends Biotechnol. 2016 Feb;34(2):124-136 - PubMed
  37. J Am Chem Soc. 2007 Mar 21;129(11):3104-9 - PubMed
  38. Mol Biotechnol. 2015 Dec;57(11-12):982-92 - PubMed
  39. J Nanosci Nanotechnol. 2006 Apr;6(4):974-81 - PubMed
  40. Isis. 2008 Jun;99(2):239-72 - PubMed
  41. Biomaterials. 2010 Aug;31(22):5813-24 - PubMed
  42. Nano Lett. 2012 Feb 8;12(2):629-33 - PubMed
  43. Expert Rev Vaccines. 2008 Feb;7(1):33-41 - PubMed
  44. Langmuir. 2008 Feb 5;24(3):906-12 - PubMed
  45. Methods Mol Biol. 2013;1051:15-31 - PubMed
  46. Science. 1935 Jun 28;81(2113):644-5 - PubMed
  47. Adv Protein Chem. 1963;18:37-121 - PubMed
  48. Chem Soc Rev. 2013 Aug 7;42(15):6236-49 - PubMed
  49. J Mol Biol. 1989 Oct 5;209(3):407-22 - PubMed
  50. Langmuir. 2012 Oct 23;28(42):14867-77 - PubMed
  51. J Mol Biol. 1989 Jul 20;208(2):307-25 - PubMed
  52. Biotechnol Bioeng. 2012 Jan;109(1):16-30 - PubMed
  53. Proc Natl Acad Sci U S A. 1982 Oct;79(19):5818-22 - PubMed
  54. Arch Virol. 2000;145(10):2217-25 - PubMed
  55. ACS Nano. 2011 Jun 28;5(6):4512-20 - PubMed
  56. Nanoscale. 2015 Jan 7;7(1):344-55 - PubMed
  57. ACS Nano. 2012 Oct 23;6(10):8692-701 - PubMed
  58. Appl Microbiol Biotechnol. 2014 Jul;98(13):5847-58 - PubMed
  59. Biochim Biophys Acta. 1959 Jun;33(2):359-70 - PubMed
  60. Front Microbiol. 2014 Dec 23;5:734 - PubMed
  61. Angew Chem Int Ed Engl. 2010 Sep 24;49(40):7213-6 - PubMed
  62. Biosens Bioelectron. 2016 Feb 15;76:213-33 - PubMed
  63. Adv Drug Deliv Rev. 2006 Dec 1;58(14):1505-22 - PubMed
  64. Virology. 2014 Jan 20;449:133-9 - PubMed
  65. Science. 1936 Jan 24;83(2143):85 - PubMed
  66. Virology. 2015 May;479-480:200-12 - PubMed
  67. Beilstein J Nanotechnol. 2015 May 26;6:1205-11 - PubMed
  68. Chem Soc Rev. 2013 Aug 7;42(15):6437-74 - PubMed
  69. Philos Trans R Soc Lond B Biol Sci. 1999 Mar 29;354(1383):569-82 - PubMed
  70. Small. 2014 Jan 29;10(2):230-45 - PubMed
  71. Chem Commun (Camb). 2002 Oct 21;(20):2390-1 - PubMed
  72. Biopolymers. 2016 Mar;105(3):113-32 - PubMed
  73. J Mater Chem B. 2015 Sep 7;3(33):6718-6730 - PubMed
  74. Philos Trans R Soc Lond B Biol Sci. 1999 Mar 29;354(1383):583-6 - PubMed
  75. Annu Rev Phytopathol. 2002;40:287-308 - PubMed
  76. Biosens Bioelectron. 1993;8(3-4):197-203 - PubMed
  77. Nano Lett. 2012 Nov 14;12(11):6005-11 - PubMed
  78. J Gen Virol. 2001 May;82(Pt 5):1013-1025 - PubMed
  79. J Mater Chem B. 2015 Oct 1;3(38):7503-7510 - PubMed
  80. Org Biomol Chem. 2007 Sep 21;5(18):2891-902 - PubMed
  81. Nat Nanotechnol. 2007 Oct;2(10):635-9 - PubMed
  82. Nanoscale. 2013 May 7;5(9):3808-16 - PubMed
  83. Proteomics. 2005 Feb;5(2):416-9 - PubMed
  84. Trends Biotechnol. 2012 Jul;30(7):369-76 - PubMed
  85. EMBO J. 1983;2(11):1901-7 - PubMed
  86. Langmuir. 2010 Aug 17;26(16):13436-41 - PubMed
  87. J Nanosci Nanotechnol. 2006 Aug;6(8):2451-60 - PubMed
  88. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6286-90 - PubMed
  89. Nat Med. 2006 Mar;12(3):354-60 - PubMed
  90. Nat Nanotechnol. 2006 Oct;1(1):72-7 - PubMed
  91. Virus Res. 2011 Apr;157(1):35-46 - PubMed
  92. Beilstein J Nanotechnol. 2015 Jun 25;6:1399-412 - PubMed
  93. PLoS One. 2015 Jun 22;10(6):e0130858 - PubMed
  94. Biomacromolecules. 2013 Dec 9;14(12):4351-9 - PubMed
  95. Biotechnology (N Y). 1995 Jan;13(1):53-7 - PubMed
  96. Trends Biotechnol. 2013 Sep;31(9):530-8 - PubMed
  97. Adv Healthc Mater. 2015 Apr 22;4(6):874-82 - PubMed
  98. Beilstein J Nanotechnol. 2012;3:620-8 - PubMed
  99. ACS Nano. 2013 Jun 25;7(6):5032-44 - PubMed
  100. Nano Lett. 2014 Mar 12;14(3):1551-8 - PubMed
  101. J Mater Chem. 2008 Jan 1;18(32):3763-3774 - PubMed
  102. Chem Soc Rev. 2010 Mar;39(3):1153-82 - PubMed
  103. Nucleic Acids Res. 1986 Dec 9;14(23):9229-42 - PubMed
  104. Lab Chip. 2009 Jan 7;9(1):107-14 - PubMed
  105. Angew Chem Int Ed Engl. 2013 Jul 8;52(28):7203-7 - PubMed
  106. J Virol. 1992 Aug;66(8):4629-31 - PubMed
  107. J Biomed Mater Res A. 2015 Mar;103(3):887-95 - PubMed
  108. Nanotechnology. 2015 May 22;26(20):205501 - PubMed
  109. Front Plant Sci. 2015 Dec 24;6:1137 - PubMed
  110. Vet Immunol Immunopathol. 2012 Aug 15;148(3-4):211-25 - PubMed
  111. Philos Trans R Soc Lond B Biol Sci. 1999 Mar 29;354(1383):519-685 - PubMed
  112. J Mater Chem B. 2015 Aug 7;3(29):6037-6045 - PubMed
  113. Curr Opin Biotechnol. 2015 Apr;32:163-170 - PubMed
  114. Methods Mol Biol. 2014;1108:113-21 - PubMed
  115. Chemphyschem. 2015 Apr 7;16(5):911-8 - PubMed
  116. Front Plant Sci. 2016 Jan 13;6:1244 - PubMed
  117. Biotechnol Adv. 2012 May-Jun;30(3):489-511 - PubMed
  118. FEBS Lett. 1980 May 5;113(2):271-4 - PubMed
  119. Virus Res. 2014 Feb 13;180:92-6 - PubMed
  120. Biomacromolecules. 2012 Feb 13;13(2):422-31 - PubMed
  121. J Struct Biol. 2015 Feb;189(2):87-97 - PubMed
  122. Langmuir. 2004 Jan 20;20(2):441-7 - PubMed
  123. Intervirology. 2013;56(3):141-65 - PubMed
  124. ACS Nano. 2010 Aug 24;4(8):4531-8 - PubMed
  125. J Colloid Interface Sci. 2009 Apr 15;332(2):402-7 - PubMed
  126. Nature. 1971 Sep 3;233(5314):25-7 - PubMed
  127. Trends Biotechnol. 1993 Nov;11(11):471-8 - PubMed
  128. Angew Chem Int Ed Engl. 2009;48(37):6790-810 - PubMed
  129. Langmuir. 2015 Apr 7;31(13):3897-903 - PubMed
  130. J Gen Virol. 2012 Feb;93(Pt 2):400-407 - PubMed
  131. Chem Soc Rev. 2015 Aug 7;44(15):5320-40 - PubMed
  132. Acc Chem Res. 2011 Sep 20;44(9):774-83 - PubMed
  133. Front Plant Sci. 2016 Feb 10;7:89 - PubMed
  134. Philos Trans R Soc Lond B Biol Sci. 1999 Mar 29;354(1383):521-9 - PubMed
  135. Adv Colloid Interface Sci. 2015 Aug;222:119-34 - PubMed
  136. Biomacromolecules. 2012 Dec 10;13(12):3949-58 - PubMed
  137. J Vis Exp. 2012 Nov 16;(69):e4352 - PubMed
  138. Nano Lett. 2005 Oct;5(10):1931-6 - PubMed
  139. J Biomol Struct Dyn. 2014 Apr;32(4):630-47 - PubMed
  140. Proc Natl Acad Sci U S A. 2006 May 30;103(22):8396-401 - PubMed
  141. Front Plant Sci. 2015 Nov 10;6:984 - PubMed
  142. Biotechnol Annu Rev. 2003;9:199-247 - PubMed

Publication Types