Display options
Share it on

NPJ Schizophr. 2015 Mar 04;1:14004. doi: 10.1038/npjschz.2014.4. eCollection 2015.

Relationship between somatostatin and death receptor expression in the orbital frontal cortex in schizophrenia: a postmortem brain mRNA study.

NPJ schizophrenia

Dipesh Joshi, Vibeke S Catts, Juan C Olaya, Cynthia Shannon Weickert

Affiliations

  1. Schizophrenia Research Institute, Liverpool Street, Darlinghurst, NSW, Australia; Neuroscience Research Australia, Barker Street, Randwick, NSW, Australia; School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.

PMID: 27336026 PMCID: PMC4849439 DOI: 10.1038/npjschz.2014.4

Abstract

BACKGROUND: Recently, we provided evidence showing reductions in GAD67 and Dlx mRNAs in the orbital frontal cortex (OFC) in schizophrenia. It is unknown whether these reductions relate mainly to somatostatin (SST) or parvalbumin (PV) mRNA expression changes, and/or whether these reductions are related to decreased SST mRNA+ interneuron density.

AIMS: To determine whether inhibitory interneuron deficits in the OFC from people with schizophrenia are greatest for SST or PV mRNAs, and whether any such deficits relate to mRNAs encoding cell death signalling molecules.

METHODS: Inhibitory interneuron mRNAs (SST; PV: in situ hybridization, quantitative PCR (qPCR)) and death signaling mRNAs [FAS receptor (FASR); TNFSF13: qPCR] were measured in control and schizophrenia subjects (38/38). SST mRNA+ interneuron-like cells were quantified in layer II in the gyrus rectus. Gray matter SST and PV mRNAs were correlated with interstitial white matter neuron (IWMN) density (GAD65/67; NeuN) and death signaling mRNAs.

RESULTS: SST mRNA was reduced in OFC layers I-VI in schizophrenia (both in situ and qPCR), with greatest deficit in layer II (67%). Layer II SST mRNA+ neuron density was reduced in schizophrenia (~29%). PV mRNA was reduced in layers III (18%) and IV (31%) with no significant diagnostic difference in PV mRNA measured by qPCR. FASR mRNA was increased in schizophrenia (34%). SST, but not PV, expression correlated negatively with FASR and TNFSF13 expressions and with IWMN density.

CONCLUSIONS: Our study demonstrates that SST interneurons are predominantly linked to the inhibitory interneuron pathology in the OFC in schizophrenia and that increased death receptor signaling mRNAs relate to prominent laminar deficits in SST mRNA in the OFC in schizophrenia. We suggest that SST interneurons may be more vulnerable to increased death receptor signaling than PV interneurons.

References

  1. J Comp Neurol. 1991 Jan 22;303(4):584-99 - PubMed
  2. J Psychiatr Res. 2014 Jun;53:125-32 - PubMed
  3. Cell. 1996 Nov 1;87(3):427-36 - PubMed
  4. Am J Psychiatry. 2008 Apr;165(4):479-89 - PubMed
  5. Neurotox Res. 2004;6(1):57-61 - PubMed
  6. J Chem Neuroanat. 2001 Jul;22(1-2):95-100 - PubMed
  7. Rev Bras Psiquiatr. 2012 Jun;34(2):207-12 - PubMed
  8. Arch Gen Psychiatry. 1996 May;53(5):425-36 - PubMed
  9. J Psychiatr Res. 2009 Jul;43(11):970-7 - PubMed
  10. Mol Psychiatry. 2008 Feb;13(2):147-61 - PubMed
  11. Brain Res Brain Res Rev. 2000 Mar;31(2-3):270-6 - PubMed
  12. Cytokine Growth Factor Rev. 2003 Jun-Aug;14(3-4):311-24 - PubMed
  13. Schizophr Bull. 2014 Sep;40(5):952-7 - PubMed
  14. Nat Neurosci. 1999 Nov;2(11):1032-7 - PubMed
  15. Cancer Res. 2000 Feb 15;60(4):1021-7 - PubMed
  16. Schizophr Res. 2009 Dec;115(2-3):261-9 - PubMed
  17. Arch Gen Psychiatry. 1995 Apr;52(4):258-66 - PubMed
  18. Brain. 2008 Jan;131(Pt 1):180-95 - PubMed
  19. Psychopharmacology (Berl). 2011 Jun;215(3):413-27 - PubMed
  20. Arch Gen Psychiatry. 1991 Nov;48(11):996-1001 - PubMed
  21. Biol Psychiatry. 2011 Jan 1;69(1):63-70 - PubMed
  22. Trends Neurosci. 2008 Sep;31(9):478-86 - PubMed
  23. Cereb Cortex. 2008 Jul;18(7):1575-87 - PubMed
  24. Am J Psychiatry. 1997 Jul;154(7):1013-5 - PubMed
  25. Psychiatry Res. 1995 Nov 29;59(1-2):81-96 - PubMed
  26. Arch Gen Psychiatry. 1995 Oct;52(10):805-18; discussion 819-20 - PubMed
  27. Biol Psychiatry. 2002 Oct 1;52(7):708-15 - PubMed
  28. Schizophr Res. 2011 Sep;131(1-3):165-73 - PubMed
  29. Neuropsychopharmacology. 2008 Sep;33(10):2442-55 - PubMed
  30. Biol Psychiatry. 2012 Nov 1;72(9):725-33 - PubMed
  31. Neuropsychopharmacology. 2001 Jul;25(1):1-27 - PubMed
  32. J Cell Sci. 2005 Jan 15;118(Pt 2):265-7 - PubMed
  33. Biol Psychiatry. 2002 Mar 1;51(5):377-86 - PubMed
  34. Prog Neurobiol. 2004 Apr;72(5):341-72 - PubMed
  35. Schizophr Res. 1997 Apr 11;24(3):349-55 - PubMed
  36. Am J Psychiatry. 2010 Dec;167(12):1479-88 - PubMed
  37. Am J Psychiatry. 2001 Sep;158(9):1411-22 - PubMed
  38. Aust N Z J Psychiatry. 2010 Jan;44(1):59-70 - PubMed
  39. Arch Gen Psychiatry. 2000 Aug;57(8):761-8 - PubMed
  40. Biol Psychiatry. 1994 Jun 15;35(12):946-56 - PubMed
  41. J Neurosci. 2003 Jul 16;23(15):6315-26 - PubMed
  42. J Comp Neurol. 1986 Jun 1;248(1):1-18 - PubMed
  43. Brain Res. 1970 Oct 13;23(2):167-83 - PubMed
  44. Arch Gen Psychiatry. 1998 Mar;55(3):215-24 - PubMed
  45. Biol Psychiatry. 2001 Sep 15;50(6):395-406 - PubMed
  46. Psychiatry Res. 2001 Aug 25;107(2):61-73 - PubMed
  47. J Neurosci. 2009 Feb 25;29(8):2344-54 - PubMed
  48. PLoS One. 2012;7(4):e35511 - PubMed
  49. J Neurosci. 2005 Aug 24;25(34):7792-800 - PubMed
  50. Schizophr Bull. 1993;19(3):537-49 - PubMed
  51. Neuropsychopharmacology. 2007 May;32(5):1178-94 - PubMed
  52. Biol Psychiatry. 1995 Dec 15;38(12):783-7 - PubMed
  53. Front Behav Neurosci. 2013 Sep 03;7:116 - PubMed
  54. Arch Gen Psychiatry. 2000 Mar;57(3):237-45 - PubMed
  55. Schizophr Res. 2014 May;155(1-3):26-30 - PubMed

Publication Types

Grant support