Display options
Share it on

Front Mol Neurosci. 2016 May 27;9:36. doi: 10.3389/fnmol.2016.00036. eCollection 2016.

Connexin30.2: In Vitro Interaction with Connexin36 in HeLa Cells and Expression in AII Amacrine Cells and Intrinsically Photosensitive Ganglion Cells in the Mouse Retina.

Frontiers in molecular neuroscience

Arndt Meyer, Stephan Tetenborg, Helena Greb, Jasmin Segelken, Birthe Dorgau, Reto Weiler, Sheriar G Hormuzdi, Ulrike Janssen-Bienhold, Karin Dedek

Affiliations

  1. Department of Neuroscience and Neurobiology, University of Oldenburg Oldenburg, Germany.
  2. Department of Neuroscience and Neurobiology, University of OldenburgOldenburg, Germany; Research Center Neurosensory Science, University of OldenburgOldenburg, Germany.
  3. Division of Neuroscience, University of Dundee Dundee, UK.

PMID: 27303262 PMCID: PMC4882342 DOI: 10.3389/fnmol.2016.00036

Abstract

Electrical coupling via gap junctions is an abundant phenomenon in the mammalian retina and occurs in all major cell types. Gap junction channels are assembled from different connexin subunits, and the connexin composition of the channel confers specific properties to the electrical synapse. In the mouse retina, gap junctions were demonstrated between intrinsically photosensitive ganglion cells and displaced amacrine cells but the underlying connexin remained undetermined. In the primary rod pathway, gap junctions play a crucial role, coupling AII amacrine cells among each other and to ON cone bipolar cells. Although it has long been known that connexin36 and connexin45 are necessary for the proper functioning of this most sensitive rod pathway, differences between homocellular AII/AII gap junctions and AII/ON bipolar cell gap junctions suggested the presence of an additional connexin in AII amacrine cells. Here, we used a connexin30.2-lacZ mouse line to study the expression of connexin30.2 in the retina. We show that connexin30.2 is expressed in intrinsically photosensitive ganglion cells and AII amacrine cells. Moreover, we tested whether connexin30.2 and connexin36-both expressed in AII amacrine cells-are able to interact with each other and are deposited in the same gap junctional plaques. Using newly generated anti-connexin30.2 antibodies, we show in HeLa cells that both connexins are indeed able to interact and may form heteromeric channels: both connexins were co-immunoprecipitated from transiently transfected HeLa cells and connexin30.2 gap junction plaques became significantly larger when co-expressed with connexin36. These data suggest that connexin36 is able to form heteromeric gap junctions with another connexin. We hypothesize that co-expression of connexin30.2 and connexin36 may endow AII amacrine cells with the means to differentially regulate its electrical coupling to different synaptic partners.

Keywords: amacrine cell; connexin; electrical synapse; ganglion cell; gap junction; ipRGC; melanopsin; primary rod pathway

References

  1. Vis Neurosci. 2010 Jul;27(3-4):91-101 - PubMed
  2. J Comp Neurol. 2015 Jul 1;523(10 ):1529-47 - PubMed
  3. J Comp Neurol. 2010 Dec 1;518(23):4813-24 - PubMed
  4. Nature. 1995 Oct 26;377(6551):734-7 - PubMed
  5. Curr Biol. 2015 Nov 2;25(21):2763-73 - PubMed
  6. Invest Ophthalmol Vis Sci. 2013 Aug 01;54(8):5151-62 - PubMed
  7. Curr Biol. 2003 Aug 5;13(15):1290-8 - PubMed
  8. Mol Cell Neurosci. 2008 Jan;37(1):119-34 - PubMed
  9. J Mol Neurosci. 2016 Feb;58(2):178-92 - PubMed
  10. Neuron. 2002 Nov 14;36(4):703-12 - PubMed
  11. Eur J Neurosci. 2004 May;19(10):2633-40 - PubMed
  12. J Membr Biol. 2000 Aug 1;176(3):249-62 - PubMed
  13. Neurosci Lett. 1991 Apr 29;125(2):187-90 - PubMed
  14. J Comp Neurol. 2002 Sep 16;451(2):115-26 - PubMed
  15. Nature. 2008 May 1;453(7191):102-5 - PubMed
  16. J Comp Neurol. 2010 Mar 15;518(6):911-27 - PubMed
  17. Cell. 1996 Feb 9;84(3):381-8 - PubMed
  18. J Comp Neurol. 2005 Sep 12;490(1):29-39 - PubMed
  19. J Neurosci. 2005 Jan 19;25(3):566-76 - PubMed
  20. J Neurosci. 2012 May 16;32(20):6747-59 - PubMed
  21. Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5959-64 - PubMed
  22. J Comp Neurol. 2000 Aug 14;424(1):1-23 - PubMed
  23. J Neurosci. 2008 Sep 24;28(39):9769-89 - PubMed
  24. Mol Cell Neurosci. 2010 Sep;45(1):47-58 - PubMed
  25. Eur J Neurosci. 2006 Sep;24(6):1675-86 - PubMed
  26. Eur J Neurosci. 2015 Mar;41(6):734-47 - PubMed
  27. Invest Ophthalmol Vis Sci. 2006 Jul;47(7):2757-64 - PubMed
  28. PLoS One. 2013 Jul 23;8(7):e69426 - PubMed
  29. J Comp Neurol. 2013 Apr 1;521(5):1119-35 - PubMed
  30. Curr Biol. 2002 Nov 19;12(22):1900-7 - PubMed
  31. Mol Vis. 2011 Feb 03;17:355-79 - PubMed
  32. J Comp Neurol. 2015 Oct 1;523(14):2062-81 - PubMed
  33. J Physiol. 2012 Jan 1;590(1):223-34 - PubMed
  34. J Neurosci. 2002 Dec 15;22(24):10558-66 - PubMed
  35. J Comp Neurol. 2009 Feb 10;512(5):664-87 - PubMed
  36. J Cell Sci. 2014 Mar 15;127(Pt 6):1190-202 - PubMed
  37. J Neurosci. 2009 Nov 25;29(47):14903-11 - PubMed
  38. Neurosci Res. 2010 Feb;66(2):141-50 - PubMed
  39. Nat Methods. 2012 Jun 28;9(7):676-82 - PubMed
  40. Prog Retin Eye Res. 2012 Jul;31(4):287-302 - PubMed
  41. Cell Commun Adhes. 2003 Jul-Dec;10(4-6):173-80 - PubMed
  42. J Neurosci. 1998 Nov 1;18(21):8936-46 - PubMed
  43. J Neurosci. 2001 Aug 15;21(16):6036-44 - PubMed
  44. Eur J Neurosci. 2009 Jul;30(2):217-28 - PubMed
  45. Biochem Biophys Res Commun. 2013 Sep 6;438(4):772-7 - PubMed
  46. J Neurosci. 2001 Jan 1;21(1):230-9 - PubMed
  47. Proc Natl Acad Sci U S A. 2005 Sep 13;102(37):13313-8 - PubMed
  48. Biochem Biophys Res Commun. 2008 May 2;369(2):388-94 - PubMed
  49. Circ Res. 2005 Jun 10;96(11):1169-77 - PubMed
  50. J Comp Neurol. 2000 Aug 21;424(2):327-38 - PubMed
  51. Invest Ophthalmol Vis Sci. 2013 Mar 28;54(3):2361-6 - PubMed
  52. J Neurosci. 2004 Mar 31;24(13):3325-34 - PubMed
  53. Brain Res. 2012 Dec 3;1487:160-72 - PubMed
  54. J Comp Neurol. 2011 Feb 15;519(3):433-50 - PubMed

Publication Types