Display options
Share it on

Front Microbiol. 2016 May 27;7:809. doi: 10.3389/fmicb.2016.00809. eCollection 2016.

Potential Role of Yeast Strains Isolated from Grapes in the Production of Taurasi DOCG.

Frontiers in microbiology

Maria Aponte, Giuseppe Blaiotta

Affiliations

  1. Sezione di "Microbiologia", Dipartimento di Agraria, Università degli Studi di Napoli Federico II Napoli, Italy.
  2. Sezione di "Scienze della Vigna e del Vino", Dipartimento di Agraria, Università degli Studi di Napoli Federico II Avellino, Italy.

PMID: 27303391 PMCID: PMC4882326 DOI: 10.3389/fmicb.2016.00809

Abstract

Twelve samples of Aglianico grapes, collected in different locations of the Taurasi DOCG (Appellation of Controlled and Guaranteed Origin) production area were naturally fermented in sterile containers at room temperature. A total of 70 yeast cultures were isolated from countable WL agar plates: 52 in the middle of the fermentation and 18 at the end. On the basis of ITS-RFLP analysis and ITS sequencing, all cultures collected at the end of fermentations were identified as Saccharomyces (S.) cerevisiae; while, the 52 isolates, collected after 1 week, could be referred to the following species: Metschnikowia (M.) pulcherrima; Starmerella (Star.) bacillaris; Pichia (P.) kudriavzevii; Lachancea (L.) thermotolerans; Hanseniaspora (H.) uvarum; Pseudozyma (Pseud.) aphidis; S. cerevisiae. By means of Interdelta analysis, 18 different biotypes of S. cerevisiae were retrieved. All strains were characterized for ethanol production, SO2 resistance, H2S development, β-glucosidasic, esterasic and antagonistic activities. Fermentation abilities of selected strains were evaluated in micro-fermentations on Aglianico must. Within non-Saccharomyces species, some cultures showed features of technological interest. Antagonistic activity was expressed by some strains of M. pulcherrima, L. thermotolerans, P. kudriavzevii, and S. cerevisiae. Strains of M. pulcherrima showed the highest β-glucosidase activity and proved to be able to produce high concentrations of succinic acid. L. thermotolerans produced both succinic and lactic acids. The lowest amount of acetic acid was produced by M. pulcherrima and L. thermotolerans; while the highest content was recorded for H. uvarum. The strain of Star. bacillaris produced the highest amount of glycerol and was able to metabolize all fructose and malic acid. Strains of M. pulcherrima and H. uvarum showed a low fermentation power (about 4%), while, L. thermotolerans, Star. Bacillaris, and P. kudriavzevii of about 10%. Significant differences were even detected for S. cerevisiae biotypes with respect to H2S production, antagonistic activity and β-glucosidase activity as well as for the production of acetic acid, glycerol and ethanol in micro-vinification experiments.

Keywords: Aglianico; biotyping; grapes; identification; wine fermentation; yeast microflora

References

  1. Nucleic Acids Res. 1977;4(5):1257-65 - PubMed
  2. Front Microbiol. 2016 Jan 20;6:1569 - PubMed
  3. Appl Environ Microbiol. 2006 Oct;72(10):6716-24 - PubMed
  4. J Appl Microbiol. 2005;99(3):509-17 - PubMed
  5. FEMS Microbiol Lett. 2003 Apr 25;221(2):249-55 - PubMed
  6. J Biosci Bioeng. 2014 May;117(5):569-75 - PubMed
  7. FEMS Yeast Res. 2008 Mar;8(2):328-36 - PubMed
  8. PLoS One. 2012;7(2):e30428 - PubMed
  9. Appl Environ Microbiol. 2012 Mar;78(6):1987-94 - PubMed
  10. Food Microbiol. 2014 Oct;43:5-15 - PubMed
  11. Microb Cell Fact. 2014 Aug 27;13:121 - PubMed
  12. Food Microbiol. 2012 Feb;29(1):18-26 - PubMed
  13. J Clin Microbiol. 2000 Dec;38(12):4626-8 - PubMed
  14. Food Microbiol. 2011 Aug;28(5):873-82 - PubMed
  15. Environ Microbiol Rep. 2012 Feb;4(1):105-12 - PubMed
  16. Int J Syst Bacteriol. 1999 Jan;49 Pt 1:329-37 - PubMed
  17. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5269-73 - PubMed
  18. Biosci Biotechnol Biochem. 1997 Mar;61(3):563-4 - PubMed
  19. Int J Food Microbiol. 2003 Jan 25;80(2):171-6 - PubMed
  20. FEMS Yeast Res. 2008 Nov;8(7):979-95 - PubMed
  21. Int J Food Microbiol. 2015 Apr 16;199:33-40 - PubMed
  22. Food Microbiol. 2012 Sep;31(2):159-66 - PubMed
  23. FEMS Yeast Res. 2004 Jan;4(4-5):427-35 - PubMed
  24. Int J Food Microbiol. 2012 Feb 15;153(3):243-59 - PubMed
  25. Yeast. 2000 Jun 15;16(8):675-729 - PubMed
  26. J Basic Microbiol. 2001;41(2):105-113 - PubMed
  27. J Basic Microbiol. 2013 Aug;53(8):645-56 - PubMed
  28. J Appl Microbiol. 2014 May;116(5):1209-17 - PubMed
  29. Int J Food Microbiol. 2003 Sep 1;86(1-2):11-22 - PubMed
  30. Microbiol Res. 2015 Dec;181:75-83 - PubMed
  31. Plant Physiol. 2013 Apr;161(4):2014-22 - PubMed

Publication Types