Display options
Share it on

Nat Commun. 2016 Jul 04;7:12094. doi: 10.1038/ncomms12094.

Light-melt adhesive based on dynamic carbon frameworks in a columnar liquid-crystal phase.

Nature communications

Shohei Saito, Shunpei Nobusue, Eri Tsuzaka, Chunxue Yuan, Chigusa Mori, Mitsuo Hara, Takahiro Seki, Cristopher Camacho, Stephan Irle, Shigehiro Yamaguchi

Affiliations

  1. Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
  2. PRESTO, Japan Science and Technology Agency, Kyoto 606-8502, Japan.
  3. Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.
  4. Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan.
  5. School of Chemistry, University of Costa Rica, San Pedro Montes de Oca, San José 11501-2060, Costa Rica.
  6. Institute of Transformative Bio-Molecules, Nagoya University, Nagoya 464-8602, Japan.

PMID: 27373592 PMCID: PMC4932191 DOI: 10.1038/ncomms12094

Abstract

Liquid crystal (LC) provides a suitable platform to exploit structural motions of molecules in a condensed phase. Amplification of the structural changes enables a variety of technologies not only in LC displays but also in other applications. Until very recently, however, a practical use of LCs for removable adhesives has not been explored, although a spontaneous disorganization of LC materials can be easily triggered by light-induced isomerization of photoactive components. The difficulty of such application derives from the requirements for simultaneous implementation of sufficient bonding strength and its rapid disappearance by photoirradiation. Here we report a dynamic molecular LC material that meets these requirements. Columnar-stacked V-shaped carbon frameworks display sufficient bonding strength even during heating conditions, while its bonding ability is immediately lost by a light-induced self-melting function. The light-melt adhesive is reusable and its fluorescence colour reversibly changes during the cycle, visualizing the bonding/nonbonding phases of the adhesive.

References

  1. J Am Chem Soc. 2014 Feb 26;136(8):3024-7 - PubMed
  2. Nat Commun. 2015 Jun 18;6:7310 - PubMed
  3. Angew Chem Int Ed Engl. 2006 Oct 6;45(39):6470-3 - PubMed
  4. Nat Chem. 2015 Aug;7(8):634-40 - PubMed
  5. Phys Rev Lett. 2001 Jul 2;87(1):015501 - PubMed
  6. Science. 1995 Jun 30;268(5219):1873-5 - PubMed
  7. Chem Commun (Camb). 2009 Feb 21;(7):803-5 - PubMed
  8. Chemistry. 2014 Feb 17;20(8):2193-200 - PubMed
  9. Nat Mater. 2004 May;3(5):307-10 - PubMed
  10. Nat Chem. 2014 Mar;6(3):229-35 - PubMed
  11. Nat Nanotechnol. 2006 Oct;1(1):25-35 - PubMed
  12. Adv Mater. 2012 May 2;24(17):2353-6 - PubMed
  13. ACS Appl Mater Interfaces. 2012 Apr;4(4):2124-32 - PubMed
  14. Nat Commun. 2014;5:3320 - PubMed
  15. J Am Chem Soc. 2014 Jun 25;136(25):9158-64 - PubMed
  16. Acta Crystallogr C Struct Chem. 2015 Jan;71(Pt 1):3-8 - PubMed
  17. Chem Rec. 2015 Feb;15(1):329-46 - PubMed
  18. ACS Appl Mater Interfaces. 2014 May 28;6(10):7933-41 - PubMed
  19. J Am Chem Soc. 2013 Sep 25;135(38):14134-41 - PubMed
  20. Nature. 2003 Sep 11;425(6954):145 - PubMed
  21. J Am Chem Soc. 2013 Jun 19;135(24):8842-5 - PubMed
  22. Nature. 2007 Apr 12;446(7137):778-81 - PubMed
  23. Angew Chem Int Ed Engl. 2008;47(27):4986-8 - PubMed
  24. Chem Rev. 2009 Nov;109(11):6275-540 - PubMed
  25. Chem Commun (Camb). 2011 Feb 14;47(6):1770-2 - PubMed
  26. J Am Chem Soc. 2007 Nov 7;129(44):13402-3 - PubMed
  27. Angew Chem Int Ed Engl. 2005 Dec 16;45(1):38-68 - PubMed
  28. Nat Mater. 2009 Aug;8(8):677-82 - PubMed
  29. ACS Appl Mater Interfaces. 2014 Apr 9;6(7):4713-9 - PubMed
  30. Chem Rev. 2014 Dec 24;114(24):12174-277 - PubMed
  31. Chem Rev. 2000 May 10;100(5):1847-1874 - PubMed
  32. Nat Mater. 2015 Nov;14(11):1087-98 - PubMed
  33. Angew Chem Int Ed Engl. 2013 Aug 19;52(34):8810-27 - PubMed
  34. J Phys Chem A. 2008 May 22;112(20):4545-9 - PubMed

Publication Types